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ABSTRACT. Deterministic mathematical model of kinetostatics of wheel vehicle in terms of different modes of spatial 

motion in the context of curved route is proposed. Earth-based coordinate system is introduced which pole and axial 

orientation are determined by the convenience of route description as well as vehicle-related coordinates which pole axial 

orientation are determined within inertial space with the help of natural trihedral.  Turn of the natural trihedral within 

inertial coordinates is described by means of quaternion matrices in the context of Rodrigues-Hamilton parameters. 

Rodrigues-Hamilton parameters are in matrix form in direct accordance with specified hodograph. Kinetostatics of wheel 

vehicle is considered in terms of spatial motion with an allowance for three-dimensional aerodynamic forces, gravity, and 

tangential and centrifugal inertial forces.  In the context of spiral-screw lines deterministic mathematical model of wheel 

vehicle kinetostatics is proposed in the form of hodograph in terms of uniform motion, accelerated motion, and decelerated 

motion within following route sections: straight and horizontal; in terms of vertical grade; in terms of horizontal plane. 

Analytical approach to determine animated contact drive-control forces of wheel vehicle for structural diagrams having 

one and two support points involving of a driving-driven wheel characteristic is proposed based on kinetostatics equations. 
Mathematical model of wheel vehicle kinetostatics in terms of spatial motion is constructed on the basis of nonlinear 

differential Euler-Lagrange equations;   it is proposed to consider physically implemented motion trajectories of wheel 

vehicles in the context of spiral-screw lines; hodograph determines spatial displacement; Rodrigues-Hamilton parameters 

determines spatial turn; Varignon theorem is applied to identify components of drive (control) force. The obtained results 

make it possible to solve a wide range of problems connected with dynamic design of wheel vehicles involving 

controllability, and estimation of dynamic load of both system and support surface. 

 

Introduction. In the context of uniform, accelerated, and decelerated motion, modes of front-drive, 

rear-driven, and four-wheel drive vehicle in terms of spatial curved route within junctions and turns, 

grades and straights, problems connected with estimation of dynamic load of structure and  road 

surface [1,2,3] as well as stability and controllability [4,5,6] are topical. Solving of problems of 

dynamic design [7,8] of wheel vehicle help determine equivalent contact loads on supporting points 

taking into consideration characteristic of driver wheel, synthesize  required control components, and 

identify relevant torque of driver wheel to provide desired motion mode of a vehicle in terms of 

specified route [9]. 

Problem definition. Inertial and geometrical parameters of wheel vehicle; configuration of 

supporting points taking into consideration characteristic of driver wheel for front-drive, rear-driven, 

and four-wheel drive vehicle;  external force effect on a vehicle (gravity force and aerodynamic 

force); route geometry (straight, turn, grade, junction, manoeuvring); mode of a vehicle motion 

(uniform, accelerated, decelerated) are supposed as preselected.  

Equivalent contact driving force (internal resulting constraint reaction of support surface) providing 

desired mode of a vehicle motion in terms of preselected route should be identified. It is required to 

distribute equivalent contact driving force on supporting points involving of drive wheel 

characteristic for front-drive, rear-driven, and four-wheel drive structural schemes of wheel vehicle.  
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Mathematical model of wheel vehicle kinetics. Spatial deterministic mathematical model of wheel 

vehicle kinetics in the context of different modes of motion within curved route is based upon 

nonlinear differential Euler-Lagrange equations in the form of quaternion matrices [10]. In this 

context, weight-specified material point (m) with application of aerodynamic forces, gravity, inertial 

forces, and unknown contact driving forces (controlling forces) providing desired mode of motion in 

terms of predetermined spatial curved route is taken as dynamic model of a vehicle.  

Following coordinates (Earth-based coordinate system which pole and axial orientation are 

determined by the convenience of route description as well as vehicle-related coordinates which pole 

axial orientation are determined within inertial space with the help of natural trihedral) are introduced. 

In the context of the taken problem, definition mathematical model bears following simplifications: 

centre of vehicle masses coincides with a pole of related coordinates; matrix of inertia of a vehicle 

degenerates into zero matrix; that is gyrodynamics of a vehicle is not considered.  

Dynamics of vehicle advance is described with one quasivelocity ( V ) being projection of a vector 

of linear velocity of vehicle mass centre on the tangent to motion trajectory (route) and two 

quasiaccelerations ( W , nW ): tangential ( W ) and normal (centripetal) nW .  

In the context of the assumptions, Euler-Lagrange equations describing kinetics of wheel vehicle take 

the simple form: 
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where m  – is vehicle mass; 

g  – is gravity acceleration; 

q  – is velocity pressure; 

S  – is specific area; 

dC1 , dC2 , and dC3  – are aerodynamic coefficients; 

W , and nW  – are quasiaccelerations; 

A  – is quaternion matrix in terms of Rodrigues-Hamilton parameters determining orientation of 

natural trihedron within Earth-based coordinate system; 

dR  – is quaternion matrix determining orientation of aerodynamic axes relative to natural ones; 

N , nN , and bN  – are driving forces.  

Mathematical model of vehicle motion within route section in the context of various modes. 
Spatial curve supporting trajectory-route as well as motion mode of a vehicle within the route is 

categorically determined in Earth-based coordinate system by means of hodograph [11]: 

 

   321 rkrjritr  , (2) 
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where i , j , are – k  basis vectors of Earth-based coordinate system. 

It is proposed to determine hodograph combined with physically implemented trajectories of vehicle 

motion in the context of spiral and screw lines [9]: 
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where  3,2,1,0ihii  are running parameters determined on prescribed boundary conditions; 

  – is average turn rate equal to 
0

0

t


  . In this context 0  is complete turn angle; and 0t  is 

specified time for turn. 

Components of hodograph are determined as follows:  
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It should be noted that highly developed world countries continue research to determine new forms 

of transit curves providing smooth changes in curve [2]. Transit curves in the form of cubic parabola, 

sinusoid, lemniscate, three- or four-leafed roses, and pseudospiral, which is circular curve, 

logarithmic spiral, Euler spiral etc. in special cases, are known. Transit curves proposed from heuristic 

or criteria viewpoints should correspond to true guide path of transport vehicle both in the context of 

constant velocity and variable one [2]. 

Depending upon values of running parameters hodograph proposed in the context of spiral and screw 

lines makes it possible simulate various particular cases of implemented trajectories and modes of 

vehicle motion within the routes.   

а) Route section is straight ( 0 ) and horizontal ( 00 h , 01 h , 02 h , 03 h ); mode of motion 

is uniform ( BA VV 11  , 02 AV , 02 BV , 03 AV , 03 BV ). Then   02 tr ,   03 tr , 

 

   tVrtr AA 111  ; (5) 

 

that is hodograph is: 

 

    tVritr AA 11  . (6) 
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In this context 00 tt  where 0t  is time to travel predetermined route section (
AB rr 11  ); that is: 
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b) Route section is straight and horizontal; mode of motion is not uniform: 

- decelerated (
BA VV 11  ); 

- accelerated (
BA VV 11  ). 

Then hodograph is: 
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c) Route section is in vertical plane ( i , k ); it has: 

- rise ( 03 Ar , 03 Br ), 

- grade ( 03 Ar , 03 Br ). 

Mode of motion is determined with the help of boundary conditions: BA VV 11  , 02 AV , 02 BV , 

03 AV , 03 BV . 

Then hodograph is: 
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Appropriate profile of the route section (motion trajectory) within vertical plane ( xz0 ) is obtained in 

the form of combination of square parabola and cubic parabola: 

 

 
32 23 xxz  , (10) 

where 
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In the context of route section under consideration: 

- Variation range of variables is: 10  x , 10  z ; 

- Extremum points are: 0э

1 x , 1э

2 x ; 

- Extreme values are:   00min z ,   11max z ; 
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- Bending point is: 








2

1
,

2

1
; 

- Concavity interval is:
2

1
0  x ; 

- Convexity interval is: 1
2

1
 x . 

d) Route section is within horizontal plane ( i , j ) providing 
2

0


   angle turn;  mode of motion is 

determined with the help of boundary conditions:  

 01 Ar ,   02 Ar ,   03 Ar ,   01 Br ,   02 Br ,   03 Br ; 

 01 AV ,   02 AV ,   03 AV ,   01 BV ,   02 BV ,   03 BV . 

 

Then hodograph is: 
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In this context kinematical connection is available: 

 

 ABBA rVrV 1122  . (13) 

 

Relevant plan of the route section (motion trajectory) within horizontal plane is obtained in polar 

coordinate system in the form of quadratic Archimedean spiral and cubic one: 
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In the context of the route section under consideration, variables domain is:
2

0


  , BA rrr 21  ; 
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In terms of special case if BA VV 12   then BA rr 21   and   Arr 1  in the context of any  ; that is 

motion trajectory takes a form of  radial arc if right-angle turn takes place. 
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Kinematics of a vehicle within predetermined route section. Kinematics of a vehicle under 

different motion modes is identified with the help of predetermined hodograph  tr . Formulas for 

components of tangential acceleration and normal one are represented by means of laconic vector 

notation [12]: 
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where r  and r  – are time derivatives 1 and two of vector function – hodograph; 

r  – is module of time derivative 1 of hodograph that is velocity value of vehicle motion; 

rr   – is module of 1 and 2 time derivatives of hodograph; 

rr    – is scalar product of 1 and 2 time derivatives of hodograph. 

Formulas for velocity components: 
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In terms of Earth-based coordinate system and axes of natural trihedron, components of vehicle 

velocity are of following kinematic relations: 

 

 

b

n

t

V

V

V
AA

r

r

r 

00

3

2

1







,   

3

2

1

00

r

r

r
AA

V

V

V
ttt

b

n









, (18) 

 

where A , At , tA , tt A  are quaternion matrices in the context of Rodrigues-Hamilton parameters: 0a

, 1a , 2a , 3a  [5, 10, 11]; in this context Rodrigues-Hamilton parameters describing a turn (orientation) 

of natural trihedron (vehicle-related dynamical frame of reference) in terms of terrestrial, fixed, 

inertial coordinates are determined directly according to specified hodograph with the help of 

following matrix equation: 
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It should be noted that the matrix 
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is symmetrical and nondegenerate; moreover, it has following property of orthogonality: 

 

 

1000

0100

0010

0001

4

1111

1111

1111

1111

1111

1111

1111

1111















, (20) 

 

That is inverse matrix is: 
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Then required solution may be identified by means of following matrix form: 
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 , n , b  basis vectors of natural trihedron of space curved route are determined with the help of 

specified hodograph in terms of the vector form: 
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Kinetostatics of ground transport vehicles. Equivalent contact driving (controlling) force of ground 

transport vehicles is determined by means of kinetic equations.   

а) Schematic of vehicle having one supporting point. 
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In this case internal resulting constraint force of supporting surface is determined with the help of 

matrix formula: 
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b) Schematic of vehicle having two supporting points. 

For two-wheel vehicle resulting driving force ( N , nN , bN ) should be distributed on two supporting 

points involving drive wheel characteristic in the form of  required system of two equivalent driving 

forces ( 1F , 2F ). In this context the two structural schemes to locate supporting points ( 10 , 
20 ) are 

possible:  

- Tandem scheme; and  

- Parallel one. 

The schemes are shown in Fig.1 where geometrical parameters are set within coordinates related to a 

vehicle;   is driving direction.  

The formulated problem of dynamic design of two-wheel ground transport vehicle is static problem; 

its solution should involve Varignon theorem [12]: 

 

 NrFrFr  2211 , (25) 

 

where 11 lrr  , 22 lrr  . 

 

  

а) b) 

Fig.1. Tandem structural scheme (а) and parallel one (b) to locate supporting points  
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Specifically, bringing pole 0  in coincidence with supporting point two 
20 results in: 

2lr  ,   02 r ,    211 llr     for tandem scheme; 

2hnr  ,   02 r ,    nhhr 211   for parallel scheme 

where 
1l , 

1h  is 
10M  section (distance from centre of mass to supporting point one); 

2l , 
2h  is 

20M  section (distance from centre of mass to supporting point two). 

Then within axes of natural trihedron, Varignon theorem is represented in the form of determinants: 
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Bringing 0  pole in coincidence with supporting point one 10  results in: 

1lr  ,   01 r ,    212 llr     for tandem scheme; 

nhr 1 ,   01 r ,    nhhr 212     for parallel scheme. 

Then within axes of natural trihedron, Varignon theorem is: 
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Whence it follows: 

- In terms of tandem scheme: TF 2  is uncertain, n
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To verify the results obtained and cope with uncertainty in the process of the problem solving apply 

static invariant one [6]: 
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Within axes of natural trihedron for tandem scheme, the equation 
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b NFF  21  (27) 

 

is performed identically while following equation 

 

  NFF TT  21  (28) 

 

becomes resolvable if technical specifications are involved in terms of driving-driven wheel 

characteristic. 

Example 1. Four-wheel drive structural scheme; that is 

 

 01 TF ,   02 TF   (29) 

 

and design parameter is assumed to be constrained  

 

 k
F

F
T

T






2

1 . (30) 

 

Then TT kFF  21  . 

From which  NFkF TT  22 ,  

that is  N
k

FT




1

1
2 ,    N

k

k
FT




1
1 . 

Particularly, if driving contact forces are equal within front axle 10  and back axle 20  then 1k , and 

hence 
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  NFT

2

1
2  ,    NF T

2

1
1  . (31) 

 

Example 2. If front drive structural scheme then 

 

 01 TF ,   02 TF  . (32) 

 

Subsequently    NFF TT  21  

or  NFkF TT  22  that is 

 

  N
k

FT

1

1
2


 ,    N

k

k
FT

1
1


 , (33) 

where 1k . 

Example 3. If rear-driven structural scheme then 

 

 01 TF ,   02 TF  . (34) 

 

Subsequently    NFF TT  21  

or  NFkF TT  22 , то есть 

 

  N
k

FT




1

1
2 ,    N

k

k
FT




1
1 , (35) 

 

where 1k . 

Comparable result is available while considering parallel scheme. The equations  

 

  NFF ПП  21 ,   b

П

b

П

b NFF  21  (36) 

 

are performed identically.  Then the equation 

 

 n

T

n

T

n NFF  21  (37) 

 

is solvable in terms of extra conditions. 

In this context lateral contact forces are assumed as those related to technically reasonable conditions: 
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 01 П

nF ,   02 П

nF ,   
П

n

П

n

F

F

2

1 , (38) 

 

where   is predetermined coefficient (design parameter). 

Then  П

n

П

n FF 21  . 

Where  n

П

n

П

n NFF  22 ,  

That is n

П

n NF



1

1
2 ,   n

П

n NF







1
1 . 

In particular, it is assumed that 1  for symmetrical structural scheme. Consequently 

 

 
n

П

n NF
2

1
2  ,   

n

П

n NF
2

1
1  . (39) 

 

Summary. Deterministic mathematical model of wheel vehicle kinetics in terms of different modes 

of spatial motion in the context of curved route has been proposed. The model is based upon nonlinear 

Euler-Lagrange equations. In the category of spiral-screw lines deterministic mathematical model of 

wheel vehicle kinematics has been proposed in the form of hodograph in the context of uniform 

motion, accelerated motion, and decelerated motion within following route sections: straight and 

horizontal; in terms of vertical grade; in terms of turn in horizontal plane. Analytical approach to 

determine contact drive-control forces of wheel vehicle for structural schemes having one and two 

support points involving of a driving-driven wheel characteristic (four-wheel drive scheme, front-

wheel drive scheme, and rear-wheel drive scheme) has been proposed on the basis of kinetostatics 

equations.  
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