CONTROL OF TANDEM-TYPE TWO-WHEEL VEHICLE
AT VARIOUS NOTION MODES
ALONG SPATIAL CURVED LAY OF LINE
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Wheeled vehicle is considered as a material point under the conditions of non-uniform movement
along curved spatial lay of line. Hodograph in a class of spiral lines describes kinematics of a
vehicle. A kinetostatics problem of tandem-type two-wheel vehicle is being solved. Equivalent
contact dynamics are being determined.
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Introduction. A problem of dynamic design in the context of two-wheel
vehicle controllability as well as dynamic burden of its design and road surface is
important in terms of various motion modes (accelerated, decelerated, and steady)
along curved spatial lay of line in junctions, at various gradients, on straight and
turns as well as within other curved areas [1, 5, 4, 7]. The problem solution will
help determine equivalent contact control force making analysis of the required
control facilities.

The problem statement. Hodograph of vehicle motion along curved spatial
lay of line is supposed as given. A vehicle is considered as material point of known
mass moving under the gravity, given aerodynamic forces, and searched equivalent
contact moving (control) forces — resulting reaction of contact with reference
trajectory (lay of line). Curved spatial reference trajectory that is lay of line is
identified by hodograph in motionless earth reference.

Hodograph correspondent to real trajectory of vehicle motion [7] in a class
of spiral lines [5] is specified in motionless (earth) reference as follows
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where pn(i=023)are varied parameters determined on specified boundary

conditions; @is mean angular turn velocity equal to w:‘f—O. Here ¢,is complete turn

0

angle; and t, is required time of turn passing.

Following figure demonstrates lay of line as a trajectory of wheeled vehicle motion
in terms of curved area being adequate to proposed hodograph:



Here 7,7,

z,n,

are orts of earth (motionless) reference; and

k
b are orts of movable, natural axes.

It is obvious that hodograph is represented in a well-known representation form :
F(t)=Tn+Jr,+kr,.
Here vector components are assumed as:
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Here you can find hodograph of a vehicle motion:
1. steady (V,. =V,,) motion within horizontal (h, =o0; j=o0,1, 2, 3) straight

(o =0) lay of line:
?(t) = i_(rlA +V1A 't) 1

2. unsteady: (V,. <V,,)—accelerated; (v,. >V,,)— decelerated motion within
horizontal (h, =0; j=0,1, 2, 3) straight (» =0) lay of line.

3. steady (Vy. =Vis, Via =V, =0 ) motion within profile-inclined lay of line if
(ra <) —riseand(r,, > r,, ) —incline:
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Here using Cartesian coordinate system lay of line profile is represented in the
form of square and cubic parabolas: z = 3x? —2x3®, where
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4. Unsteady motion within horizontal plane where direct- angle turn takes place:
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Here lay of line plan in polar coordinate system is represented by square and cubic
Archimedean spirals:

where polar angle is: ¢ = wt ; and
polar radius is: r(¢)=r2 +r2.

Moreover, when v,, =V,, Or r, =r,, , it follows that: r(p)=r,atany ¢, ie.

we obtain lay of line in the form of radial arc within the given interval: 0 < ¢ < % :

Kinematics. Vector of vehicle linear velocity in the form of material point is

determined on the specified hodograph as:

\7=3—:_ orv =i r+]JF +kr,.

Velocity value is determined with the help of scalar product:

V-V =0°00 02 =% +17 +17.
By definition, velocity value is also determined as a time derivative from the path:

UZEOF v=S.
dt

Then the path of a vehicle within random time period is calculated by means of
definite integral with variable upper limit:
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When path is introduced as intermediate argument, velocity vector is represented
as:



V:d_?ﬁorvzd_?g
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And taking into account that: 2—: — 7, We obtain [6]:

V =75.

It is obvious that velocity vector projection on tangent line ort to spatial trajectory
IS7-v =7 -7 s . Determine velocity value as follows: v.=s; to principal
normal ort: AV =n-7S, V, =0;tobinormal ort: b-V =b-7S,

v, = 0. In terms of vector and matrix form we obtain:
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It is known that scalar and vector productions of vectors are represented in
quaternion matrices. Then in earth reference we define:
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Similarly in natural axes we obtain:
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Obvious equality follows:
S? =i +r7 1.

In the context of earth reference, linear acceleration vector is found out

according to the specified hodograph in the form of:
d°r

W = re Orfr W=ik+]jk+ki,.

Acceleration velocity is determined with the help of scalar production:
W W =i 417+
Linear acceleration vector in natural axes is [6]:

W =7S+nKS?,

I.e.
W, =7-WO0rw, =S,
W, =n-WO0r w, =KS?,
W, =b-WOrw, =0,

where K is curvature.
Then
W -W =S? + K?2S*,

i.e. dependence with specified hodograph takes place:

S? + K?S* =% +i7 +17 .

Hodograph also determines w._and w, components of following closed vector form:

Here scalar and vector products are convenient to be calculated in quaternion
matrices [3]:
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Curvature in the system of natural trihedral coordinates is determined as:




Where

W2 =W -W —W?

P

Tangential acceleration in coordinate system is determined according to the
formula:
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Consequently in earth reference we obtain:
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Equivalent vector form provides closed curvature record [4] :
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Using determinant we also find out:
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Quaternion  matrices

provide convenient
o =lon i i,

curvature calculation where

Here first and second products of its time components for hodograph under
consideration r(t) are determined as follows:
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Kinetics. Mathematical model of two-wheel vehicle in terms of its spatial
motion along curved lay of line is developed using non-linear differential Euler-
Lagrange equations in the form of quaternion matrices [3]. Projections of vehicle
velocity vector on natural axes are assumed as quasi-velocities. Natural trihedral is
taken as a bound coordinate system which pole is combined with the material point
assumed as a vehicle model. Two-wheel vehicle is considered as the material point
of the known mass with the applied inertial forces, gravitation force, aerodynamic
forces, and the required contact moving (control) forces ensuring necessary motion
mode along the specified spatial curved lay of line. Then Kkinetostatics equations
are as follows [2]:
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where m is vehicle mass; g IS gravity acceleration;
q is velocity pressure; s is characteristic area;

Cy. G,y Cy are aerodynamic coefficients;

W, w, are quasi-accelerations;

A IS quaternion matrix in terms of Rodriguez-Hamilton parameters
determining orientation of natural trihedral in earth reference;

R, IS quaternion matrix determining orientation of aerodynamic axes relative

to natural ones; and
N_, N,, N,are moving forces.

Kinematic correlations in quaternion matrices closing the given kinetostatics
equations are as follows [3]:

0 0 0 0
'.;1 — A t A Vr , Vr — At t Al rl
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Statics. Obtained resulting moving force (N) which provides motion of two-

wheel vehicle along specified lay of line in the known mode is represented as a
system of two equivalent contact control forces (F, F,)to be determined. Following

figure shows them:



Here reference points are given in movable natural axes: om =1, o,m =1,.
Then according to Varignon theorem [6] we obtain:

lelfl+?2><lfzzf><l\_l,
where £=r+7l, =F-7l,.

Hence:

FZn -

and

Or parallelism condition:

Consequently:

If r=0,then r =17, 7,=-1,7 and 1 7xF -1,7xF, =0.

It follows:
F | F,
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Static invariants are required to verify obtained results. In particular, within
normal plane of natural trihedral static invariant one:

it =Ny Fp +Fp =N,

is satisfied equally. Condition F_+F, =N_ is used to specify required torque of

traction wheel at definite resistance of driven one and required mode of vehicle
motion along the specified lay of line. Static invariant two

F, -(l\_lx

=

)+IEZ-(N_><F2):O

1

results in parallelism condition

Fu _Fu_ N0 and hFa—bFu _No
y .
Flb sz Nb |1 Flb _Iz th) Nb

Thus, analytical solution determining equivalent contact of moving (control)
forces for tandem-type two-wheel vehicle at various motion modes along spatial
curved lay of line under the effect of gravity and aerodynamic forces is obtained.
The closed vector dependences are shown in the form of quaternion matrices
providing efficient computational algorithms.
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