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RESEARCH OF TRAFFIC PREDICTION ACCURACY INFLUENCE ON THE 
EFFECTIVENESS OF TRAINS BREAKING-UP ORDER CONTROL 

 
Summary. The article presents the research results of economic feasibility of trains’ 

breaking-up order control at marshalling yards. The article objective was to determine the 
area of rational use of trains’ breaking-up order model, formalized in the form of 
stochastic programming problem. As a effectiveness criterion of trains’ breaking-up order 
operating costs of marshalling yard were used, including the costs associated with cars’ 
and locomotives’ dwell time on the station and its approaches, as well as costs associated 
with additional shunting work. With the help of simulation modeling the dependence was 
obtained, describing the impact of trains’ arrival forecasting error and processed car 
volumes on reducing operating costs of the marshalling yards through the trains’ 
breaking-up order control. The studies enable us to establish the requirements for the 
accuracy of information support of operational planning tasks, which is necessary to 
achieve the desired economic effect of the trains’ breaking-up order control. 

 
 

1. INTRODUCTION 
 

Passing cars through the classification yards as quickly as possible remains a primary mean of 
reducing dwell times and increasing yard efficiency. Various yard automation and control systems 
have been developed to assist in the implementation of these aims [1]. For example, BNSF Railway 
managers use Innovative Railroad Blocking Optimizer to plan train builds, and Canadian Pacific 
Railway also plans to begin using an electronic tool to more accurately plan a train consist before cars 
reach a yard [2]. 

According to findings [3], the yardmaster is a bottleneck in most of the classification yards. Thus, 
investigation of automated yardmaster decision support systems is an actual challenge. Next-
generation yard control systems would improve the coordination and hand-off between terminal and 
mainline operations; such systems would facilitate a more efficient and prioritized movement of cars 
from the receiving yard to the classification hump process [4]. Trains breaking-up order control 
(TBOC) at classification yards is one of the influence means on the train formation processes. The 
TBOC’s expediency was justified in [5–6]: "the humping process should be subordinate to the pull-
down process because the latter is the principal bottleneck in many yards. The hump should be 
managed and operated so that it provides the bottleneck exactly what it needs, when it needs it." 

At the present time, TBOC is almost never used by operational staff, due to the complexity of the 
task, as well as lack of appropriate automated systems for its solving. In addition, the ability to 
effectively control trains’ breaking-up order largely depends on the quality of information 
management, among which train arrival forecast plays a particularly important role. Thus, two 
necessary conditions for practical application of tasks of trains’ breaking-up order selection are 
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imposing this feature on computerized systems of control and providing these systems with reliable 
and accurate forecast of the trains’ arrival. 

 
 

2. LITERATURE REVIEW AND DEFINING THE PROBLEM 
 

The papers of many scientists are dedicated to the development of automated decision support 
systems of operational staff. The possibility of creating the systems on the basis of the theory of fuzzy 
sets and fuzzy logic was considered in paper [7]. Paper [8] is a logical continuation of the scientific 
research that proposed the usage of the artificial neural network elements for creating decision support 
systems. 

In paper [9] the hump sequencing component of the Terminal Priority Movement Planner was 
described, a proof-of-concept decision support system, field tested in 1994 at Union Pacific Railroad’s 
Hinkle, Oregon, classification yard. In papers [10, 11, 17] a hump sequence optimization model was 
proposed, which takes hump sequence and assemble sequence into consideration: “the hump sequence 
and assemble sequence are interacted, and the capacity must be coordination between those two parts. 
The efforts on the efficiency of the whole dispatching system appears insignificant, if only the hump 
capacity or assemble capacity is increased.” 

Practical works of the implementation of station processes automated control systems should take 
into account a certain unreliability of the trains’ arrival prediction. The trains’ breaking-up order 
control model that takes into account the stochastic nature of forecasting their arrival at the station was 
described in paper [12]. However, even a stochastic model may prove to be ineffective in the absence 
of reliable information about the trains’ arrival. The accuracy of traffic forecasting is one of the main 
factors determining the appropriateness of trains’ breaking-up order control. 

The main positive effect of changes in the trains’ breaking-up order control is achieved by reducing 
unproductive dwell time of cars at the station breaking-up subsystem. The latter usually occurs in the 
case of processed car volumes and breaking-up subsystem loading level increasing. 

Thus, the area of effective control of the trains’ breaking-up order is determined primarily by two 
factors – accuracy of traffic forecasting and size of car processing. The task of determining this area is 
important and was solved in this paper. 

 
 

3. RESEARCH OF ECONOMIC EFFICIENCY OF TRAINS BREAKING-UP ORDER  
    CONTROL 

 
In the railways of Ukraine, a freight production system is used, based on compliance with the 

conditions of strictly defined train weight and train length standards – that is, the formation of the train 
in the classification yard can be carried out only in case of accumulation of cars compound satisfying 
these conditions. With this work technology, completion of the cars compounds accumulation as early 
as possible and their early departure from the station is the most desirable aim to solve most train 
formations (that include TBOC). 

Initial data for scheduling trains’ formation and trains’ departure are as follows: 
– car list of each train (excluding local, pick-up, and transfer ones) arriving for full or partial 

processing; 
– plan of trains’ arrival to the station; 
– data on presence at the station tracks of trains and cars according formation plan at the 

beginning of planning period; 
– data on availability and expected arrival of locomotives and locomotive crews for trains’ 

departure; 
– data on the quantity, destination, and estimated time of car, which are rearranged to the station 

track after the cargo handling operations; 
– technological time standards for operations with trains and cars. 



Research traffic prediction accuracy…. 153 
 

A planning operator provides calculation of operational plans of train formation of 4-6-hour period. 
The operator receives data on the quantity, destination, and planned rearrangement time of local cars 
to the station track from shunting dispatcher. 

Calculation of the train formation, which is the estimation of moments of trains’ departure 
preparedness, is determined on the basis of established technological time standards of trains’ presence 
at the receiving and departure yards, trains’ breaking-up, their formation, and rearrangement to the 
departure yard. 

After train formation plan calculation (based on the accepted breaking-up order), the operator 
informs the station (shunting) dispatcher the expected time of trains’ formation completion. 

Afterward, the shunting dispatcher determines the procedure of preparing formed trains for 
departure. During trains’ departure planning, number-specific assignment of own formation and transit 
trains according schedule train path is carried out. At this time the train number, its departure, 
destination station, and locomotive number are indicated. In some cases, when the number of schedule 
train path of planning period is less than the number of planned departure trains, the departure of 
additional trains is performed according the dispatch schedule. In practice, the proportion of the trains 
that departure according to the dispatch schedule reaches up to 50%. 

Nowadays, train formation planning is performed "in manual mode". Given the large amount of 
information that must be processed in a short time, economically feasible decision making by the 
operational staff is an extremely difficult task. Automated systems can facilitate decision-making 
procedures and improve trains’ breaking-up order control. 

The automated control system (ACS) of trains’ breaking-up order should be based on a reliable 
forecast of trains’ arrival. Now, the Ukrainian automated control system ACS VP UZ-E contains the 
information only about performed railway traffic. Thus, the operating staff can receive the actual 
points of trains’ arrival, departure, or passing the stations. At that, ACS VP UZ-E does not provide 
railway traffic forecasting. Therefore, during current planning of stations, work operational staff, 
based on normative duration of the trains’ movement between stations and on own experience, can 
only manually specify the expected time of trains’ arrival. Despite the fact that often the accuracy of 
the forecasting can be quite high (average forecasting error can be no more than 5-10 minutes), the 
lack of this information in the automated control systems greatly complicates the possibility of its use 
for solving complex optimization control problems. 

The absence of automated trains’ traffic forecasting in ACS VP UZ-E complicates the use of many 
levers of influence on train formation processes by the operational staff, including control of trains’ 
breaking-up order. 

To ensure the forecast reliability, the traffic forecasting system should be based on modern 
mathematical and technical means. Mathematical tool of artificial neural networks is a powerful mean 
for creating forecasting models. The possibilities of its application for train traffic forecasting are 
investigated in the paper [13], which proposed to perform predictions based on consideration of a wide 
range of factors that affect the conditions of trains’ movement. 

Since even the most reliable forecast is characterized by some random error, it is important to know 
how accurate should be the forecast in order to provide an effective TBOC. In other words, it is 
necessary to determine how the efficacy of this task implementation changes by changing the 
characteristics of stochastic forecasting error. 

The random value of forecasting error for sufficiently adequate and reliable forecasting model is 
described using normal distribution with zero expectation and a certain standard deviation, depending 
on the traffic conditions at railway lines. This view is confirmed by studies [14], performed at 
DNURT. Therefore, the study of trains’ breaking-up order control efficiency in this paper was made 
based on the assumption that the random value of forecasting error is described by normal distribution 
with expectation zero. This random value is determined by the standard deviation. 

For research the model TBOC presented in [15] was used. Each option of train processing is 
characterized by selected trains’ breaking-up order 
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21= ,           (1) 
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where: k,...,N,NN 21  – train number, which is breaking-up, respectively, first, second, k; 

      t  – number of trains breaking-up order, !1...kt =  
Let’s consider the breaking-up of one train as one step of the task. In equation (1) there is 

restriction of the trains’ quantity that can be considered in the step of solving the problem: 
hk ≤ ,             (2) 

where: h  – the number of tracks in receiving yard of marshalling station. 
We denote the whole set of options of the trains breaking-up as }{XX (t)= . Among all the options 
(t)X  it is necessary to select the one that provides the minimum overall operating costs of 

marshalling station. In this case, the objective function of the TBOC task is formulated as follows: 

X(t)X

(t)
man

(t)
lh

(t)
th

(t)
wh

(t) )(ХС)(XC)(XC)(XC)C(X
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where: )(XC (t)
wh  – costs associated with dwell time of cars at the station in the implementation of 

the breaking-up order (t)X ; these costs are determined in currency units on the basis of the cars’ total 
dwell time and the cost of one hour of car dwell time at the station. These costs take into account the 
time spent by cars at the whole station from arrival (for actually arrived cars – from the current time) 
to the departure from the station; 

)(XC (t)
th  – costs associated with dwell time of trains in case of impossibility of their receiving at 

station in the implementation of breaking-up order (t)X ; these costs are determined in currency units 
as the sum of the costs of cars’ and locomotives’ dwell time and locomotive crews wages (these costs 
take into account the time spent prior to arrival); 

)(XC (t)
lh  – costs associated with dwell time of locomotives at the station in the implementation 

of breaking-up order (t)X ; these costs are determined in currency units as the sum of the direct costs 
of downtime of train locomotives and locomotive crews wages (these costs take into account the time 
spent after arrival); 

)( )(t
man XC  – costs associated with additional shunting on station in the implementation of 

breaking-up order (this part of the costs arise, for example, during overflow of sorting tracks); these 
costs are determined in currency units as the sum of the cost of shunting locomotives’ dwell time, the 
cost of energy spent on the performance of shunting operations, and locomotive crews’ wages. 

The result of trains’ breaking-up order control is mainly achieved by reducing the costs associated 
with cars’ dwell time at the station )(XC (t)

wh . Despite the fact that cars’ dwell time at the station 
yards affects the needful track quantity, the presented TBOC model in any way does not take into 
account the possible reduction in needful infrastructure as a result of effective trains’ breaking-up 
order control. This can be explained by the following considerations. First, the reduction in 
unproductive dwell time of trains with accomplish car groups at the receiving yard does not lead to an 
overall reduction in trains’ dwell time at this yard – a common dwell time, usually remains the same, 
with only its redistribution occurring between the trains with accomplish car groups and other trains. 
Second, reducing cars’ dwell time in classification yard also cannot lead to a reduction in the 
necessary quantity of tracks in this yard. This is primarily due to the existing method of determining 
the necessary quantity of sorting tracks – based on the quantity of trains’ formation destinations. 

Let us assume that },...,θ,θ{θ}{θ fi 21=  – set of possible states of the system “Station – Adjacent 
approaches”, that is defined by possible moments of trains’ arrival to the station – 

},...,T,T{Tθ ki 21= . A set }{θi  is based on statistical forecasting error on trains. Probability 
)P(θi  of each state is known. 

Given the possibility of the actual trains’ arrival deviation from the forecast, we obtain the 
stochastic programming task [16]. Under these conditions, solving the problem of choosing the 
breaking-up order involves the choice of order, which provides the minimum expectation of total 
operating costs related with the processes of trains’ formation. This expectation of operating costs is 
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determined by considering all possible states, in which may be the station in case of the actual trains’ 
arrival moments’ deviation from forecasted ones: 

X(t)X

f

i
ii

(t)(t) ))P(θ);θ(C(X)(XC
∈∀=

→⋅=′ ∑ min
1

,      (4) 

where: );θC(X i
(t)  – total operating cost of the breaking-up order (t)X  under conditions iθ . 

The TBOC model takes into account the possible risks of irrational decisions resulting from the 
inaccurate forecasting of trains’ arrival. Of course, the TBOC model does not take into account all of 
the risks. For example, train, departed from the station, stemming from improved breaking-up order, 
may be delayed on the next nearest station. However, the planning horizon of the TBOC model is 
limited to the moment of the train departure from the station. In fact, this approach is reasonable, given 
the fact that with an increase in the depth of planning its reliability inevitably decreases. 

The model TBOC was investigated in terms of economic efficiency. The study was performed by 
simulation modeling using the model developed at the Department of stations and junctions of 
DNURT. For this purpose, the universal simulation model was adapted to the station layout and 
technology of odd system of Nizhnedneprovsk-Uzel marshalling yard (Ukraine). 

In the paper, the impact of the accuracy of the trains’ arrival forecast on the efficiency of trains’ 
breaking-up order control was studied. Control efficiency is understood here as a relative reduction in 
operating costs of marshalling station, achieved by changing the trains’ breaking-up order. Accuracy 
of the forecasting was determined using standard deviation of forecasting error and varied ranging 
from 5 minutes to 25 minutes in steps of 5 minutes. 

The trains’ arrival is predicted on the basis of performed railway traffic – that is, the forecast of 
train arrival can be updated after this train passes the next railway station. As the train approaches the 
end point of the route, the accuracy of the prediction, of course, will increase. In the presented TBOC 
model, the arrival forecast compiled after the train passage at the last technical station before arriving 
at Nizhnedneprovsk-Uzel marshalling yard was used. The duration of the trains’ movement between 
these two stations is about 50 minutes. Thus, the information about the predicted moment of the train 
arrival appears approximately 50 minutes before the actual arrival of the train. 

The main economic effect of trains’ breaking-up order control is achieved by reducing the 
unproductive dwell time of trains with accomplish car groups at the receiving yard. Such downtime is 
largely dependent on the size of traffic volume and processing load of the breaking-up subsystem. 
Therefore, the studies on the effect of accuracy forecasting on TBOC efficiency were performed for 
different car processing volumes. At the same time it takes into account the condition of compliance 
with a reasonable processing load level (in the range 75-85%) of the main perpetrators (car 
maintenance crews and shunting locomotives), limiting the capacity of the marshalling yard. 

Besides, studies were performed at different depths of planning (i.e. with different number of 
trains) to be included in the count of breaking-up order variants. Simulation has showed that it is 
enough to fulfill planning of 4-5 trains. Further increasing the depth of planning does not improve the 
performance of the station. Test results for the depth of planning on 4 trains are shown in Fig. 1. 

 
 

4. CONCLUSIONS 
 

The results of simulation modeling allow formulation of the following conclusions: 
– the increase in standard deviation of prediction error and the decrease in car processing volume 

significantly reduce the effectiveness of trains’ breaking-up order control; 
– with the amount of car processing volume of 3,000 car/day and standard deviation of 

forecasting error to 5 minutes, operating costs, depending on the trains’ breaking-up order are 
reduced by up to 6.7%; 

– with the amount of car processing volume of 2,500 car/day and standard deviation of 
forecasting error for about 25 minutes, the appropriateness of trains’ breaking-up order control 
almost disappears; 
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– increasing the economic efficiency of TBOC by increasing the size of the car processing 
volume with is explained due to an increase in unproductive dwell time of trains in the 
receiving yard. 
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Fig. 1. Dependency of breaking-up order control efficiency from forecasting error 
 

These results reflect the possible positive effects of trains’ breaking-up order control on a 
Nizhnedneprovsk-Uzel marshalling yard. Features of effective trains’ breaking-up order control 
depends also on a number of specific characteristics, which are individual for each station (for 
example, the quantity of approaches to the receiving yard and the quantity of tracks in the receiving 
and classification yards). Therefore, the question of generalization of the results to other marshalling 
yards requires additional research. In addition, the obtained results are adequate only if the functioning 
of the freight production system is similar to freight production system of Ukrainian railways. This 
system is characterized by the presence of strict requirements for weight and length of trains and the 
absence of strict scheduled train operations. 

The feasibility of implementing technologies of trains’ breaking-up order control for marshalling 
stations is largely determined by the accuracy of traffic forecasting at nearby stations. Besides, a 
reliable basis for the implementation of these technologies is the large size of the car processing and 
high load of marshalling station breaking-up subsystem. 

For feasibility of practical use of trains’ breaking-up order models, it is necessary to ensure two 
conditions: 

– imposition of this function on automated control systems; 
– providing an automated system with sufficiently reliable and accurate prediction of trains’ 

arrival. 
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