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Abstract

The two-criteria optimum design problem for thin-walled members with two axes of symmetry (of H-type) subjected to compression
and bending is solved. Components of the objective function vector are the compressive force and the bending moment in the web plane.
- Pareto-optima and “compromise” optimal projects have been obtained and compared with standard profiles.
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1. Introduction

In papers [1,2] the optimum design problem for channel
and lipped channel profiles subjected to compression and/or
bending was considered in the framework of the theory of
multi-criteria optimization of structures (vector-valued opti-
mization). In this work our consideration is expanded to H-
section as a typical cross-section with two axes of symmetry.
The main idea remains the same as in the previous papers.
Usually the weight minimization problems for structural
elements with respect to stability were considered for
separate loading cases—for compressive force, bending
moment and others. But, in practice, structural members
often undergo the action of various loads, separately or in a
combination. Therefore the question arises: what configura-
tion of the cross-section can be considered as an optimal one
with account of such multifarious character of loading? This
problem is formulated and solved in the framework of
QJ;the theory of multi-criteria optimization. Only require-
ments of stability (overall and local) are taken into account
(the material is suggested to be elastic).

We would like to emphasize one important difference
between our approach and usual applications of the vector-
valued optimization. Usually this theory is employed in order
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to account essentially different objective functions, e.g.,
weight and cost. We take into account different loads, so the
components of the objective function vector are the
compressive force and the bending moment in the web plane.

2. Statement of the problem and method of solution

We seek optimal parameters of a simply supported
H-cross-section bar-beam under action of compressive
force P and/or bending moment M in the web plane
(Fig. 1). Two equivalent (dual) approaches for the
optimization problem are possible: (1) to minimize the
weight of the structure for given loading; (2) to maximize
the load for given weight (volume, or cross-section area).
As we consider the beam for various loads, it is preferable
to use here the second approach. So the cross-section area
A4 and the length of the beam L are considered given, as
well as the material properties (Young’s modulus E,
Poisson’s ratio v). Design variables are dimensions of the
cross-section elements—width and thickness of the web b,,,
t,, and flanges by, t,.

The optimization problem is solved with respect to
stability. We take into account the overall buckling
(flexural and torsional) under compressive force, and
flexural-torsional buckling (or lateral buckling) under
bending moment. Critical forces for the overall flexural
and torsional buckling P, P, and critical moment for
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Fig. 1. H-section beam and its loading.
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Fig. 2. Typical local buckling modes under compression (a) and
bending (b).

flexural-torsional buckling Mp, as well as their critical
combinations, were calculated according to the linear
theory of thin-walled bars [3].

Along with overall buckling we accounted for the local
buckling. The linear local buckling loads (compressive
force P;, bending moment M; and their combinations) were
obtained from solution of the buckling problem for the
beam—column considered as an assemblage of strips—plates.
Typical shapes of local buckling modes under compression
and bending are shown in Fig. 2. Note that we took into
account a wide spectrum of short-length local modes with
numbers of half-waves m from 2 up to 35.

Strength constraints were not imposed, i.e. the assump-
tion was adopted that the yield limit was sufficiently high.
This assumption is warranted for not too large values of
the weight parameter G* (see below).

All constraints were formulated in the following
dimensionless parameters of the load, weight and stress:

P* = L2PE106’ M* = L3ME 108,
A o
% _ 2103 * _ 2 103
G =1310° o* =510 (M

The cross-section was characterized with dimensionless
geometric parameters b,/L, bgb,, t,/b,, and t/b. All
computations were performed in these dimensionless
parameters. So the solution of the optimization problem
provides optimal dimensionless parameters. To obtain
values of dimensional optimal parameters one should
specify additionally L value.

The optimization problem was solved as a nonlinear
programming one by the linearized method of reduced
gradient [4].

3. Results of the solution. The single-criterion optimization
3.1. Beams under the bending moment

First we considered the single-criterion optimization for
beams under bending moment in the symmetry plane. The
problem was formulated as follows: for given G* determine
by/L, byfb,, t,/b,, t]bsyielding to maximum of the minimal
value of two critical moments Mp, M; (for overall and local
buckling). Optimal dimensionless parameters were computed
for the range of parameter G* (0; 0.5) in which the
assumption about elastic deformation of the material is
found to be justified.

Optimal bars turn out to be equally stable with respect to
flexural-torsional and local buckling (since the solution is
based on the linear buckling theory). It has been revealed
that two dimensionless parameters—by/b, and tt,—
weakly depend upon G* and practically are nearly
constant: bs/b,, = 0.5-0.6, t/t, = 2.35-2.55.

Two other dimensionless parameters—thickness to
width ratios for web and flange #,/b, and t,/b,—depend
upon the weight parameter G*, as is shown in Fig. 3.

Typical optimal cross-sections are shown in Fig. 4 for
two G*-values (dimensional parameters in mm are given
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Fig. 3. Optimal thickness to width ratios for web and flange under
bending.
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Fig. 4. Optimal profiles of beam under bending for L = 1 m (dimensions
in mm): (a) G* = 0.1 and (b) G* =04.
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for L = 1 m). These profiles differ from the standard ones
with very thin web.

The dependence of the dimensionless critical moment
M* on weight parameter G* can be approximated with the
following simple formula (with high accuracy):

M* =30.865G*2. )

So, if the bending moment is given, one can easily compute
the parameter G*, and then to determine all optimal
parameters of the cross-section using the above results.

3.2. Bars under compression

The single-criterion optimization of bars under compres-
sion is formulated as follows: for given G* determine
parameters b,,/L, bgb,, t,/b,, and t/b, yielding to maximum
of minimal value of three critical forces Py, P,, and P;.

Similarly to the case of optimal bent beams, two
dimensionless parameters—by/b,, and #,t,—practically are
constant: br/b, ~ 1.84, t7/t, ~ 0.72, independently of G*
value. Note that these values are quite different comparing
to the case of bending. Flanges become thinner, the height of
webs smaller. Two other dimensionless parameters /b, and
t,/b,, depend upon the weight parameter G*, as is shown
in Fig. 5.

Optimal bars under compression turn out to be equally
stable with respect to three modes: flexural, torsional and
local buckling. Therefore the optimal profiles noticeably
differ from those for bent beams, as shown in Fig. 6, where
optimal cross-sections of compressed H-sections for two
values of G* at L = I m are given.

The dependence of the dimensionless force P* on weight
parameter G* can be approximated with high accuracy,
similarly to (2), with the following power function:

P* = 5.405G*/3, 3)

It is interesting to compare optimal H-bars under
compression with optimal channel sections studied in [1].
For optimal channel sections in [1] the following relation-
ship between P* and G* was obtained: P* = 2.794G*! 568,
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Fig. 5. Thickness to width ratios for web and flange of optimal
compressed bars.
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Fig. 6. Optimal profiles of compressed H-section bars with L=1m
(dimensions in mm): (a) G* = 0.1 and (b) G* = 0.4.

Comparing this relation with (3) one can conclude that
optimal H-section bar sustains the compressive force
approximately two times as much as optimal channel
section bar.

4. Results of the solution. The two-criteria optimization
4.1. Pareto-curves

Configurations of the optimal cross-sections for bending
and compression are found to be rather different, and
therefore solution of the two-criteria optimization problem
is of particular interest. There were constructed Pareto-
optimal curves presenting the optimal profiles for various
combinations of the force P* and bending moment M* for
a given value of the weight parameter G*. The Pareto-
curves were obtained by means of minimization in P* with
a constraint on M*, which was gradually moved from the
value corresponding to optimal bar under compression up
to the value for optimal beam under bending moment.

The Pareto-curves are presented in Fig. 7 on the plane
“normalized force P*-normalized moment M*” for several
values of G* (solid lines). They show the correspondence
between the critical force and the moment for optimal
profiles. When the point moves along the curve (for a given
G*), relationship between the critical force and the moment
changes, from that for optimal bars under pure compres-
sion to optimal beams for pure bending. Dashed lines
relate to the single-criterion optimal projects. Each point of
the right dashed curve gives a critical combination of force
and the moment for optimal H-sections at certain G* value,
for max P-projects. The left dashed line is similar curve for
max M-projects.

Note that the shapes of Pareto-curves noticeably differ
from those for channel cross-section, obtained in [1].

4.2. Compromise optimal projects
Finally, we have constructed “compromise” optimal

projects. The optimization problem was solved with the
global criterion in the form:

V4l M*
Forr, ?

3

where o is a “weight” coefficient which is chosen by
designer, and critical force and moment P* and M* are
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Fig. 7. Pareto-curves on the plane P*—M*,

Table 1 _
Compromise optimal H-sections for different values of coefficient o
(G*=0.5L=1m)

o ¥ M* Dimensions (mm) Ratios

by by tr by by/by,  tr/ty
0 035 7.64 65 115 2.8 1.1 0.56 2.53
025 054 75 66 95 3.1 1.0 0.70 3.17
0.5 1.58 4.1 70 39 2.9 2.6 1.8 1.08

0.75 1.71 3.11 75 41 2.4 33 1.84 0.732
1.0 1.71 3.11 75 41 2.4 33 1.84 0.732
normalized by division on their maximal values P}, and

M}, obtained in the single-criterion optimizations in
P* and M*, respectively, for given G*. Some results of
computations for various o values (0; 0.25; 0.5; 0.75; 1) are
presented in Table 1 for G* = 0.5, L = 1 m (values o =0
and o = 1 relate to the single-criterion optimizations).

We see that the variation of o noticeably influences the
optimal parameters. At small o they are close to those
derived in the single-criterion optimization in M*, If
a>0.7, the optimal projects coincide with ones obtained
in the single-criterion optimization in P*, i.e. for o = 1.

The obtained optimal dimensionless parameters b/b,,
t7/by, and t,,/b,, have been compared with their values for
standard H-sections. It is convenient to represent cross-
sections as points in the plane of dimensionless parameters
bs/b,, and t;/b, (Fig. 8). Different symbols correspond to
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Fig. 8. Comparison of the obtained optimal projects with the standard
H-sections.

different types of standard profiles. We can indicate here
the zone, which contains optimal cross-sections for various
G*. Some standard profiles (wide flange light profiles) fall
into the optimal zone or close to it (in the case of prevailing
bending moment (for «<0.4)). But the most standard
profiles are rather far from the optimal H-sections for any
o values, in distinction from the standard channel sections
[1]. As a rule, standard profiles have more thick webs and
flanges. We may conclude that these standard profiles are
not optimal independent of what combination of compres-
sion force and bending moment acts on the bar.
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