THE OPTIMUM DESIGN OF COMPRESSED THIN-WALLED
COLUMNS OF OPEN CROSS-SECTION

A.l. MANEVICH
Department of Theoretical Mechanics and Strength of Materials. Ukrainian University
of Chemical Technology. Gagarina av. 8, Dniepropetrovsk, 49005, Ukraine

S.V. RAKSHA
Department of Applied Mechanics. Dniepropetrovsk State Technical University
of Railway, ak. Lazaryana str. 2, Dniepropetrovsk, 49010, Ukraine

The structural optimization problem for compressed thin-walled columns of open
cross-section (channel and lipped channel) is considered on the base of the linear
stability theory and the nonlinear interactive buckling theory. Optimal
dimensionless parameters are presented as a function of a single leading
parameter of load and geometry P* and imperfection amplitudes.

1. INTRODUCTION

The minimum weight design problem for compressed thin-walled columns, in
particular, of channel profile, with respect to their stability was investigated in a few
works alrcady in 60-70-s (sce [1], [2]). Since the mechanism of failure of compressed
thin-walled bars can be different depending on their slenderness, various theoretical
modecls of stability were used — the linear theory for elastic material, models accounting
for clastic-plastic dcformations, scmicmpirical models taking into account premature
local buckling of elements using the «effective width» approach and so on.
Approximate analytical and numerical solutions of the problem were derived (note that
even lincar local buckling problem has not a closed analytical solution as it is
necessary to consider the column as assemblage of interacting plates).

In the last decades it has become clear that optimal parameters of thin-walled
structures may be strongly affected by the nonlinear interaction of different modes of
buckling. The Koiter and Skaloud’s prediction (1962) about a danger of using the
linear stability theory at solving the optimization problem for thin-walled structures
because of their high imperfection sensitivity connected with closeness of critical
stresses for different buckling modes was confirmed in investigations by JM.T.
Thompson, G.M. Lewis, W.J. Supple, V. Tvergaard, A.I. Manevich, C. Massonet, R.
Maquoi.[see reviews 2-5]. But the problem is studied qualitatively but not
quantitatively since (as applied to compressed columns) all conclusions were obtained
either for the Neut’s idealized model or for hollow square cross-section..

In the paper results of solution of the minimum-weight problem for centrally
compressed thin-walled members of channel and lipped channel cross-section are
presented. The solutions are based both on the linear stability theory and the nonlinear
theory of coupled buckling taking into account the interaction of the overall bending
modes with local modes. An efficient method of nonlinear programming is used for
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solving the optimization problem. This paper is a continuation of the work [6] in
which a exact solution of the structural optimization problem for centrally compressed
columns of channel cross-section has been derived in the framework of the linear
buckling theory.

2.STATEMENT OF THE PROBLEM AND THE METHOD OF SOLUTION

Let a thin-walled column of open cross-section shown in Fig.1 is compressed
centrally by a force P being simply supported on its edges. We assume the usual
formulation of the minimum-weight problem for thin-walled columns with respect. To
their stability. The length L , force P, the material properties (elasticity modulus Z,
Poisson’s ratio v) and initial imperfections are considered given. The profile thickness
£, widths of the flange, web and shelves by, b,, b3 are design variables (thickness of all
elements is considered to be constant implying cold-formed members).
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Fig.1. Cross-scctions of the columns and design variables

The optimization problem is stated as a nonlinear programming onc. Constraints
of the problem are buckling constraints taking into account the overall modes (bending
and torsional-bending) and local modes, sce. Fig.2. For the lipped channel there are
possible two types of local modes, depending on the lip width: 1) the flange-lip contact
lines has displacements (distortional» mode, fig. 2,¢); 2) this line is immovable (local

mode, fig.2.d).
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Fig. 2.Buckling modes for lipped channels

In the linear optimization (LO) all these buckling constraints are independent
conditions. In the nonlinear optimization (NO) the interaction between the overall
bending and local modes was taken into account, and coupled buckling constraint has
the form o < o, , where o is the average stress over cross-section, oi is the limit value

of o in the interactive buckling (the constraint on the linear torsional-bending mode
was retained). Strength constraints are not imposed, i.e. the assumption was assumed
that the material is elastic and the yield limit is sufficiently high. As it will be seen
from the obtained solution this assumption is valid (for usually used steels and alloys)
in a range of low values of the load parameter P* (see below). For other P* values the
presented solution determines an idealized optimal configuration; having optimal
parameters obtained on the base of more complicated models accounting for plastic
deformations onc can estimate the effect of plasticity on optimal project.
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The linear overall buckling sfresses were calculated according to the Vlasov’s
theory [7]. The general equation for critical stresses in the case of profiles with one
axis of symmetry is decomposed into two equations:

c=0,, (-a’/r’)c’-(c,+0,)0+0,0,=0. (1)

where:

a. - the shear center coordinate,

ok, 0y - the Euler’s critical stresses for bending with respect to x- and y- axes,
o, 1s the critical stress of the torsional buckling,

o, =n’El [(A-I"), o,=n"El, [(A-L*) 2)
o, =(r*EL,/I* +GI)[(A4-7", r*=(, +]y)/A +a’,

Iy, I, I; and /,, are the moments of inertia at bending with respect to the two axes, at
torsion and the warping constant. Critical stresses for the torsional-bending mode
(Fig.2,b) are equal to the minor root of the sccond Eq. (1).

The linear local buckling stresses were calculated according to [8]. The column
was considered as an plates assemblage, and the exact solution of the buckling problem
was constructed by conjugation of the solutions for all the constituent plates, with exact
conjugation conditions at the contact lines. For cach plate the solution of the
differential equation of stability was assumed in the form w =w(77)sinmné
n=b/L; &=z/L (zisthe longitudinal coordinate).

Boundary conditions on the frce edges and conjugation conditions on the contact
lincs result in a characteristic cquation which determines the local critical stresses
(after minimization in /). For the lipped channel profile the account for «distorsional
buckling» modes (Fig. 2, ¢) demands calculation of the in-plane stiffness matrices (in
addition to the bending stiffness matrices) in other to satisfy all the conjugation
conditions on the flange-lip contact lines. All details of the calculations are dropped
here.

The coupled buckling limit stresses were calculated in the framework of the
Koiter’s asymptotic method in the first approximation (in potential energy quadratic
and cubic terms are retained). This theory is adequate if the linear critical stresses for
different modes are sufficiently close. The limit stresses were determined from the set
of equations (summation on index «s» is not carried out)

a,(1-A/A)¢, +a,ll =a,l, AA, (s=1,2) )

together with the condition of vanishing its jacobian: /=0. Here A is the load factor, A
is the critical value of 4 for mode «s», g and g: are the amplitudes of displacement
and initial deflection in this mode (which were normalized by the condition of equality
of the maximal deflection to the thickness ). Coefficients a,, ay; are determined by the
known integrals containing the linear buckling modes. As a load factor we took the
dimensionless average stress o = (o./E)10°.
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Because of closeness of the critical stresses for a cluster of short-wave local modes
it is necessary to take into account many local modes. With the aim of simplification of
the solution we considered the interaction of each local mode with the overall mode
separately. In  process of the optimization search the number of the most dangerous
local mode changes. Note that dependencies of local buckling stresses (and coupling
buckling limit stresses) on the half-wave number 7 can have two local minima, one of
them being determined by the web slenderness, another - by the flange slenderness. In
view of these features the local buckling and limit stresses were calculated for a wide
range of half-waves numbers, i.c. instead of one constraint we consider a set of
constraints (as a rule, for values m=2-35).

The nonlinear programming (NP) problem was solved by the linecarized method of
reduced gradient (LMRG) [4]. This method, realizing the idea of changing an
independent variables set in a vicinity of the admissible domain boundary by means of
the lincar operations with the sensitivity matrices, effectively overcomes familiar
difficulties arising at solving the NP-problem (in particular, connected with zigzag-
tyvpe motion in a boundary vicinity). Our expericnce of many years employment of this
algorithm have shown its high efficiency and reliability. As a rule, a few tens iterations
were required to achieve the optimum with relative error of order 107

For generality of analysis all the constraints were formulated in dimensionless
paramecters of load, weight and stress:

P 105, gr=Aipr, o422

P¥=
L*.E L

3)

where 4 is the cross-section area (the scaling multipliers are introduced in order to
deal with parameters of order of unity). The cross-section also was characterized with
nondimensional geometric paramcters b, / L, by [ by, by / by, 1 /b,

2. RESULTS OF THE SOLUTION

In the linear optimization all optimal nondimensional paramecters are determined
by specifying the single parameter P*; in the nonlincar optimization the initial
imperfections should be additionally specified. We assume the following values of the
imperfection amplitudes (divided by thickness £): (0;0); (0.5:0); (0.5; 0.1) (the first
figure —the overall mode, the second — a local mode; for each local mode imperfections
amplitude were assumed to be the same). The solution for zero nnpcrfectlons
corresponds to the LO.

We consider the range of parameter P* (0; 2) in which the assumption about
elastic deformations of the material may be justified, according to results of given
solution (for usual materials). In this range ten values of P* have been chosen for
which the optimization problem has been solved.

In Fig. 3 there are presented optimal profiles of channel cross- secllons obtained at
the LO and NO (the imperfections amplitudes (0.5, 0)) for P*=0.5 (a) and P*=1.5 (b);
in Fig.4 the optimal cross-sections of lipped channel for the same values P* are
depicted (dimensions are given for length Z=1 m).
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The LO profiles have nearly constant values of widths ratio in entire range of P*
considercd. For channel cross-section b, /b, =0.42 —0.43; for lipped channel
b, 1b,=0.37 =039, by /b,=0.33-0.36. The thickness parameter ¢ /b; depends upon
P* for channel as follows (for lipped channel values 1 /b, are nearly the same).

Parameter P* 0.5 1.0 1.5 2.0
t/ by 0.049 0.056 0.061 0.065
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Fig. 3. Optimal cross-sections of channel at 1O and NO for two values of P* (L=1m).

80 " 74,

302 ;
Ngnl'meai opt Linzar opt. Nonlnear opt.
£y=0,5,¢,=01 £7=0,5¢5=0,1

a) P*=0,5 b) P*=15

Fig. 4. Optimal cross-sections of lipped channel at O and NO for two values of P* (L=1 m).
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In the NO the widths ratios and the relative thickness depend upon the
imperfections amplitudes, as it is seen from Table 1 (for P#=1).

Table 1. Optimal parameters for channel and lipped channel at P*=1 for various combinations of overall
and local imperfections.

Imperfections Optimal dimensionless parameters
__ Channel Lipped channel
by/L by/b,y t/b, _by/L bi/b, bi/b; t/b,
0, 0) 0.110 0.425  0.024 0.093 0.367  0.341 0.021
(0,5, 0) 0.099 0.490  0.029 0.090 0459  0.349  0.022
(0,5:0,1) 0.088 0.529 0.037 | 0.086 0.512 ~0.369 10024

The account for the mode interaction in optimization results in perceptible
decrease of web width b, and increase of thickness . The LO columns have equal

193



critical stresses for the torsional-bending mode and one of the local modes. For overall
bending mode (with respect to v-axis, Fig.1) critical stresses arc found to be higher by
10—15 %. The NO columns have equal critical stresses for the torsional-bending mode
and one of the coupled modes. The critical stresses for the local modes are higher than
for the overall ones by 50-80%. In Fig. 5 curve 1 represents the spectrum of local
critical stresses for the LO channel column at P#*=2_ curve 2 — that of the NO column
at P*=2 and imperfections amplitudes (0.5; 0), and curve 3 — coupled buckling stresses
for the NO columns (when cach local mode is accounted for scparately). We see a very
dense spectrum of coupled buckling modes and sufficiently high local buckling
stresses.

Weight paramecter G* in dependence on the loading parameter °* is shown in
Fig 6 for the LO (imperfections amplitudes (0;0)) and NO (imperfections (0.5;0) for
both channel and lipped channel cross-scction. The coupled buckling increases the
optimal weight by 5-10%. Weight of optimal lipped channel columns is lower by 16%
in comparison with channel columns in the LO, and by 24% — in the NO. So the
lipped channel profiles arc preferable for two reasons: a) the lips increase local critical
stresses: b) they lower the mode interaction and imperfection sensitivity.
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Fig. S. Spectrum of local- and coupled buckling
stresses for optimal columns in the LO and NO.
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Fig.6. Weight parameter G* versus load
parameter P* for channel and lipped channel.
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Fig. 7. Dimensionless ultimate stresses versus the load parameter * for two profiles at various
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combinations of overall and local imperfections amplitude.

Dimensionless critical stresses (averaged over the cross-section) in dependence on
parameter P* for the both profiles are presented in Fig. 7, a, b, for various
combinations of initial imperfections amplitudes (solid lincs).

It is interesting that at imperfections (0.5; 0.1) and (1.0; 0) (the last case is not
presented in Fig.1) critical stresses nearly the same, so we can conclude that local
imperfections have larger effcct on optimal parameters than overall ones. The dashed
lines represent the ultimate stresses for the LO columns when the coupled buckling is
taken into account at imperfections (0.5; 0). We see that for the columns obtained at
LO the mode interaction lowers the limit stresses by 20-22% . But after optimization
with respect to the coupled instability the decrease in weight does not exceed 5-8% for
the same imperfections. Thus the changes in optimal configurations obtained in the
nonlinear optimization decrease the dangerous effect of the mode interaction by a few
{imes.

Let us compare the optimal values of the flange width to the web width ratios
with those specified by standards. In Table 2 there are presented dimensions of
channel cross-sections according to GOST 8278-83 (I'OCT) and corresponding values
of by/ bs.

Table 2. Dimensions of bent steel channel profiles according to GOST 8278-83.

by, mm 60 80 100 120 140 160 180 200 250 300
by, mm 32 50 50 60 60 80 80 80 125 100
t, mm 3 4 3 4 4 5 S) 5) 6 8

byl by 0.53 0.625 0.5 0.5 0.43 0.5 0.44 0.4 0.5 0.33

Table 3. Dimensions of bent steel lipped channel profiles according to GOST 8282-83.

by, mm by, mm by, mm £, mm by /by by /by
62 66 175 3 1.06 0.28
65 32 8 1 0.49 0.12
65 32 8 1.6 0.49 0.12
100 50 10 2 0.50 0.10
100 80 35 5 0.80 0.35
120 55 18 5 0.46 0.15
160 50 20 3 0.31 0.12
160 60 32 4 0.37 0.20
300 60 50 5 0.20 0.16
400 160 50 3 0.40 0.12
400 160 60 4 0.40 0.15
550 65 30 4 0.12 0.05
410 65 30 4 0.16 0.07

The solution obtained enables us to indicate the following range of optimal values
of this ratio (for different values of 2 and real values of imperfections amplitudes):
b1/by=0.425 —0.53. Those figures in the last line of Table 2 which fall in this interval
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are distinguished by bold shrift. We see that only for two standard profiles ratio b,/ b,
does not fall in the optimal range obtained for compressed columns.

In Table 3 there are presented dimensions of lipped channel cross-sections
according to GOST 8282-83 and corresponding values of ratio b,/ b, and b3 / b,. The
ranges of optimal values of these ratios for compressed columns are: b,/ »,=0.37-0.52,
bsy /b7=0.33-0.37. By bold shrift in Table 3 are also indicated those cases when the
corresponding ratio falls in the optimal interval. As it is seen from Table 3, the most
of standard values of widths ratios for lipped channels are far from the optimal values
obtained for compressed columns.
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