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BRIEF COMMUNICATIONS

MARCHAUD’S INEQUALITY FOR MULTIPLE MODULES
OF CONTINUITY IN METRIC SPACES

S. A. Pichugov UDC 517.5

For periodic functions of one variable in the metric spaces L [0, 2⇡], we establish an analog of Mar-
chaud’s inequality for multiple modules of continuity.

Assume that, for real-valued functions f(x), x 2 R

1

, with period 1,

∆

t

f(x) = f(x+ t)− f(x), ∆

k

t

= 4
t

⇣
∆

k−1

t

⌘
, k 2 N ,

and

!

k

(f, h)

X

= sup

|t|h

���∆k

t

f

���
X

is the module of continuity of order k in the space X.

In the case where X = L

p

, p 2 [1,1], for k < l, k, l 2 N , parallel with the obvious inequality

!

l

(f, h)

Lp  2

l−k

!

k

(f, h)

Lp ,

the following Marchaud inequality [1] is also true:

!

k

(f, h)

Lp  C

l

h

k

1Z

h

!

l

(f, s)

Lp

s

k

ds

s

, (1)

where h 2
✓
0,

1

2

�
and C

l

is a positive constant independent of p, h, and f .

For p 2 (1,1), Timan [2; 3, p. 41] proved sharper inequalities: For h 2
✓
0,

1

2

◆
and k < l,

C

p,k

h

k

0

@
1Z

h

!

l

(f, s)

β1

Lp

s

β1k

ds

s

1

A
1/β1

 !

k

(f, h)

Lp  B

p,k

h

k

0

@
1Z

h

!

l

(f, s)

β2

Lp

s

β2k

ds

s

1

A
1/β2

, (2)

Dnepropetrovsk National University of Railway Transport, Dnepropetrovsk, Ukraine; e-mail: pichugov@i.ua.

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 71, No. 12, pp. 1712–1716, December, 2019. Original article submitted May 15,
2018.

0041-5995/20/7112–1959 © 2020 Springer Science+Business Media, LLC 1959

DOI 10.1007/s11253-020-01758-1



1960 S. A. PICHUGOV

where
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> 0.

Inequalities (2) were proved with the help of direct and inverse Jackson inequalities for the approximations of
functions by trigonometric polynomials.

By using the same method, we prove an analog of the Marchaud inequality (1) in the metric spaces L
 

.

Let ⌦ be a set of functions  : R1
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be the stretch function of  [4] (Chap. II, Sec. 1).

We now prove the following theorem:
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where C is a constant independent of f and h.

In the proof, we use the following results from the theory of approximation of functions in L
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be the best approximation of f by trigonometric polynomials of degree at most n in L
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Theorem A [5, 6]. Suppose that  2 ⌦, M
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where C = C(k, ) is a constant independent of f and h.

Note that, in [7–9], these statements were proved for the spaces L
p

, p 2 (0, 1) .

Proof of Theorem 1. For the sake of brevity, denote
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In view of the monotonicity of the functions M
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Theorem 1 is proved.

Remark 1. Inequality (3) is unimprovable in the following sense:

sup

h2
(

0,

1
2)

sup

f2L ,f 6=const

!

k

(f, h)

 

Z
1

h

M

 

 ✓
h

s

◆
k

!
!

l

(f, s)

 

ds

s

> 0. (7)
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This statement was proved in [5].
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