IEEE

UKRAINE SECTION

Igor Sikorsky Kyiv Polytechnic Institute

2022 IEEE 8th INTERNATIONAL CONFERENCE ON ENERGY SMART SYSTEMS (ESS)

CONFERENCE PROCEEDINGS

October 12-14, 2022 http://ess.ieee.org.ua

ORGANIZERS

2022 IEEE 8th International Conference on Energy Smart Systems (ESS)

Copyright © 2022 by the Institute of Electrical and Electronics Engineers, Inc. All rights reserved.

Copyright and Reprint Permission

Copyright and Reprint Permission: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For reprint or republication permission, email to IEEE

Copyrights Manager at pubs-permissions@ieee.org. All rights reserved. Copyright © 2022 by IEEE.

IEEE Catalog Number: CFP22U02-ART ISBN: 979-8-3503-9920-2

Organizing Committee of 2022 IEEE ESS Work phone: +38 (095) 393-29-13 E-mail: ess@ieee.org.ua National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" 37, Prosp. Peremohy, 03056, Kyiv, Ukraine,

	COMMITTEES
ORGANIZING COMMITTEE	
Organizing committee general chairp	erson:
Prof. Serhii DENYSIUK	National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Ukraine
Honorary chairpersons:	
Prof. Yuriy YAKYMENKO	Academician, First Vice Rector of Igor Sikorsky Kyiv Polytechnic Institute, IEEE Senior Member, Kyiv, Ukraine
Prof. Oleksandr KYRYLENKO	Academician of NAS of Ukraine, Director of The Institute of Electrodynamics, Ukraine
Technical Program Committee Chair	persons:
Dr. Denys DEREVIANKO	Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine
Publication Chairperson:	
Prof. Volodymyr POPOV	Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine
Finance Chairperson:	
Dr. Halyna BIELOKHA	Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine
Local organizing committee chair	
Dr. Anatolii ZAMULKO,	Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine
Webmaster:	
Dr. Vadym BRONYTSKYI	Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine
TECHNICA D. V. LANOVUN SE HI	AL PROGRAM COMMITTEE
Dr. Yuri ANOKHIN, SE «Ukrmetrtest	standart», Ukraine
Prof. Algirdas BASKYS, Vilnius Gedi	minas Technical University, Lithuania
Prof. Carlos Alvarez BEL, Polytechni	c University of Valencia, Spain
Prof. Massimo BIANCHI, University	or Bologna, Italy
Prof. Alexander BUTKEVTCH, Instr Drof. Olekaji CHODNVI Kramanshu	Luce of Electrodynamics of NAS of Okraine, Okraine
Prof. Deter EKEL Catholia University	r Pyoly Orizonti. Prozil
Prof. Mikhail CODOPETZ Diga Taa	h Byelu Olizonti, Brazil
Prof. Sucin There HACEN University	and a University, Latvia
Prof. Sveni Thore HAGEN, University	y of South-Eastern Norway, Norway
Institute», Ukraine	inical University of Okraine «igor Sikorsky Kylv Polytechnic
Prof. Volodymyr KULYK, Vinnytsia	National Technical University, Ukraine
Prof. Nadezhda KUNICINA, Riga Te	chnical University, Latvia
Prof. Oleksandr LAZURENKO , Na Kharkiv, Ukraine	tional Technical University "Kharkiv Polytechnic Institute",

Prof. Peter LEZHNYUK, Vinnitsa National Technical University, Ukraine

Prof. Irene LILL, Tallinn University of Technology, Estonia

Prof. Tommaso LUCCHINI, Politecnico di Milano, Italy

Prof. Mantas MARCIUKAITIS, Lithuanian Energy Institute, Lithuania

Prof. Morten Christian MELAAEN, University of South-Eastern Norway, Norway

Prof. Valerii MYKHALSKYI, Institute of Electrodynamics of NAS of Ukraine, Ukraine

Prof. Heinz Joachim OPITZ, Energie Institute Hamm, Germany

Prof. Gennady PAVLOV, Mykolaiv National University of Shipbuilding, Ukraine

Dr. Vsevolod PAVLOVSKYI, Institute of Electrodynamics of NAS of Ukraine, Ukraine

Prof. Serhii PERESADA, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Ukraine

Prof. Carlos PFEIFFER, University of South-Eastern Norway, Norway

Prof. Carlos Roldan PORTA, Polytechnic University of Valencia, Spain

Prof. Victor REZTSOV, Institute of Renewable Energy of NAS of Ukraine, Ukraine

Prof. Michael SEGEDA, National University «Lviv Polytechnic», Ukraine

Dr. Oleg SINCHUK, State Higher Educational Institution «Kryvyi Rih National University», Ukraine

Prof. Ievgen SOKOL, National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine

Prof. Peter STAKHIV, National University «Lviv Polytechnic», Ukraine

Prof. Borys STOGNII, Institute of Electrodynamics of NAS of Ukraine, Ukraine

Prof. Ryszard STRZELETSKI, Gdańsk University of Technology, Poland

Prof. Yurii TUGAI, Institute of Electrodynamics of NAS of Ukraine, Ukraine

Dr. Dmitry VINNIKOV, Tallinn University of Technology, Estonia

Prof. Eugene VOLODARSKY, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Ukraine

Prof. Anatoly VOLOSHKO, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Ukraine

Prof. Stanislav VYPANASENKO, Dnipro National Mining University, Ukraine

Prof. Juliia YAMNENKO, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Ukraine

Prof. Alexander YANDULSKYI, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»,Ukraine

Dr. Oleg YURCHENKO, Institute of Electrodynamics of NAS of Ukraine, Ukraine

Dr. Anatolii ZABOLOTNYI, Zaporizhia National Technical University, Ukraine

Prof. Michael ZAGIRNYAK, Mykhaylo Ostrogradski State University of Kremenchuk, Ukraine

Prof. Andrew ZHARKIN, Institute of Electrodynamics of NAS of Ukraine, Ukraine

Prof. Valery ZHUIKOV, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Ukraine

TABLE OF CONTENTS	
SECTION 1. SMART ENERGY, POWER AND ENERGY ENGINEERING	12
Pavlo Shymaniuk, Igor Blinov and Volodymyr Miroshnyk	13-16
Short-term nodal electrical load forecasting with artificial neural networks	10 10
Ihor Blinov, Ievgen Zaitsev, Viktoriia Bereznychenko and Yevhen Parus	17 20
Analysis of the effectiveness fault indicators use for control overhead power lines	17-20
Pylyp Hovorov, Anastasiia Kindinova, Vladlen Hovorov and Omer Abdelrhim	
Control of modes of power supply and lighting systems of cities based on the concept of Smart-Grid	21-25
Yevhen Parus, Ihor Blinov and Dmytro Olefir	
Simulation model for assessing the feasibility of using the Energy Storage System for Regulation of Modes of Electric Networks	26-30
Nickolai Bolotnyi and Evgen Bardyk	01 0 5
An Analysis of Uncertainty for Failure Risk Assessment of Power Transformer	31-35
Valentyna Molokanova, Andriy Maliienko, Vitaliy Petrenko and Ivan Lutsenko	
Problems and concept of electric vehicles energy networks	36-41
Vladyslav Markov, Evhen Honcharov and Natalia Kriukova	
Problems Of Induction Generators Using At Wind Power Plants And Their Computer Simulation	42-47
Vladislav Kuchanskyy, Yuri Lykhovyd, Belik Milan and Olena Rubanenko	
Phase Design and Wires Cross Section Justification of Extra High Voltage Line	48-52
Nickolai Bolotnyi and Evgen Bardyk	
Improved Power Transformer Condition Assessment under Uncertainty using Fuzzy Logic	53-58
Viacheslav Bezruchko, Roman Buinyi, Vadim Bodunov, Andrii Krasnozhon and Oleksandr Miroshnyk	7 0 (2
Choosing the Cross-section of Cable Core for Wind Power Electrical Collector Network taking into account the economic factor	59-62
Milan Belik, Vladislav Kuchanskyy, Yuri Lykhovyd and Olena Rubanenko	
Optimal Value Determining Method of Parameters Compensating Devices of Bulk Electric Networks	63-68
Mykhailo Artemenko, Yurii Kutafin, Ivan Shapoval, Vasyl Chopyk, Valerii Mykhalskyi and Serhii Polishchuk	(0.72
Identification of unbalanced power in a three-phase three-wire power system under linear loading	09-72
Mykola Grebchenko, Mykhailo Sopel, Yurii Pylypenko and Dmytro Voitov	
Quasi-bilateral method for determining the distance to the ground fault of unilateral power lines	73-77

Sergii Saukh and Andriy Borysenko

Representation of Power System Load Control Instruments in the Unit Commitment Model with Cyclic Horizon of Forecasting	78-84
Oleksandr Burykin, Petro Lezhniuk, Artur Sytnyk, Yuliia Malogulko and Volodymyr Kulyk	05 00
Method of estimating the share of electricity consumption of a given consumer, which is provided from renewable energy sources	92-99
Dmitry Tugay, Olexandr Shkurpela, Yana Forkun, Valentyn Akymov, Denis Bystrov and Radul Makoviei	89-94
Monitoring of loss power components in three-phase low-voltage power supply systems	
Vladimir Popov, Vadim Tkachenko, Vasyl Kostiuk, Olena Yarmoliuk and Ivan Frolov	05 100
Optimal Distribution Networks Sectionalizing to Comply Reliability Indexes Regulations	95-100
SECTION 2. RENEWABLE ENERGY SYSTEMS AND DISTRIBUTED GENERATION	ION 101
Mykhailo Abdulin, Oleksandr Siryi and Tetiana Sheleshei	102-107
Energy and ecological assessment of gas burning boiler equipment	
Ryszard Strzelecki, Mykola Lukianov and Ievgen Verbytskyi	108-111
Feature of Solar Radiation Forecast Services Use for Solar Plants	100 111
Serhii Denysiuk, Halyna Bielokha and Marina Kolomiichuk	
Optimization of consumption of primary fuel in local electricity systems using diesel generators	112-115
Ihor Sinchuk, Oleksii Mykhailenko, Andrey Kupin, Oleksandr Ilchenko, Kyrylo Budnikov and Vladyslav Baranovskyi	11(100
Developing the algorithm for the smart control system of distributed power generation of water drainage complexes at iron ore underground mines	110-122
Igor Blinov, Volodymyr Miroshnyk and Stepan Loskutov	
Comparison of widely-used models for multifactoral short-term photovoltaic generation forecast	123-126
Sergii Boichenko and Oksana Tarasiuk	
World Practicies and Prospects of Using Hydrogen As a Motor Fuel	127-132
Oleksandr Plakhtiy, Volodymyr Nerubatskyi and Denys Hordiienko	
Research of Operating Modes and Features of Integration of Renewable Energy Sources into the Electric Power System	133-138
Olexandr Shkurpela, Dmitry Tugay and Serhii Korneliuk	
Prospects of Implementation of a Synchronous Reluctance Machine in Low Power Wind Plants	139-143
Petro Vasko, Andryi Verbovij and Serhii Pazych	
Simulation modeling of the dynamics of the process of charging the pumped hydro storage station from wind turbine installation	144-148

7

Oleksandr Popovych, Ivan Golovan, Stepan Shevchuk and Leonid Listovshchyk

Means of Complex Design of the Electromechanical System of the Gravity Energy Storage of the WindPower Plant	149-152
Andrii Kondratiev, Oleksii Vambol, Maryna Shevtsova, Anton Tsaritsynskyi and Tetyana Nabokina	
Influence of Technological and Design Factors on the Temperature Distribution in a Composite Being Moulded	153-158
Mykola Ostroverkhov, Vadim Chumack, Mykhailo Kovalenko and Yevhen Ihnatiuk	159-164
Magnetoelectric Generator with Magnetic Flux Shunting for Electric Power Complexes	
Serhii Denysiuk, Halyna Bielokha, Denys Derevianko and Vadym Bronytskyi	165 160
Design and modeling PV converter with hysteresis control	105-108
Mykola Ostroverkhov, Vadim Chumack, Mykhailo Kovalenko and Maxim Falchenko	160 174
Voltage Control of the Magnetoelectric Generator Based on the Change of the Magnetic Resistance of the Auxiliary Flux Circuits	109-174
Viktor Denisov	
Integrated Power System multi-node model, taking into account the nondispatchable of renewable energy sources	175-179
Oleksii Karmazin, Volodymyr Lytvynchuk, Mykola Kaplin and Nickolai Bolotnyi	
Analysis of the Probable Decrease of Load Shedding Reserve in Power System of Ukraine at Installed Capacity of Renewable Energy Sources Olexandr Shavolkin, Iryna Shvedchykova, Michal Kolcun and Dušan Medved'	180-183
Variant of Implementation of a Grid-Tied Solar-Wind System with a Storage Battery for Self-Consumption of Local Object	184-189
SECTION 3. SMART CITIES AND BUILDINGS	190
Borys Basok, Borys Davydenko, Svitlana Goncharuk, Anatoliy Pavlenko, Oksana Lysenko and Volodymyr Novikov	191-194
Features of heat transfer through a window with electric heating	
Borys Basok, Borys Davydenko, Oksana Lysenko, Goncharuk Svitlana, Yurii Veremiichuk and Maryna Moroz	195-198
Intelligent management of the building's heat consumption when using individual heat points	
Oleksii Bychkov, Kateryna Merkulova and Yelyzaveta Zhabska	
Improvement of Information Technology for Person Identification for Usage in Energy Smart Systems	199-203
Svetlana Golubieva, Maryna Morneva and Iryna Deuschle	
Increase in the efficiency of controlling marine electric engines by optimizing their	204-207
control systems	204 207

Approaches to developing an audio system as part of a smart house

Yuriy Varetsky	212 215
PV Reactive Power Impact on MV Distribution Grid Operating Conditions – Case Study	212-215
Volodymyr Shaleva, Fedir Matiko, Hanna Krykh and Vitalii Roman	
Smart system for monitoring technological process parameters and energy equipment protection	216-220
Vitalii Opryshko, Serhii Denysiuk, Oksana Lysenko, Dmytro Biriukov and Borys Basok	221-225
Demand Response as a possible new service in after-war Ukrainian power system	
Borys Pleskach and Victor Samoylov	226 220
Smart assessment of hidden energy losses at a thermal power plant	226-229
Danylo Filyanin, Anatolii Voloshko, Vasyl Kalinchyk, Olexandr Meita, Andrii Zhuravlow and Vitalii Pobigaylo	230-232
The monitoring of additional heating of the cable	
Olga Chernousenko, Vitalii Peshko, Dmitro Rindyuk and Inna Bednarska	
Effect of Start-up Operating Modes on the Cyclic Damage of Thermal Power Plant Units	233-238
Iryna Shvedchykova, Julia Romanchenko, Inna Melkonova, Hryhoriy Melkonov and Andrii Pisotskii	239-242
Possibilities of Electricity Generation Using Small Wind Generators in Eastern Ukraine	
Stanislav Popov, Mykola Ishchenko, Oleksandr Savytskyi, Liudmyla Ishchenko and Danil Veselovsky	
Mathematical model for prediction of characteristics of power supply in large industrial regions	243-247
SECTION 4. SMART INDUSTRIAL APPLICATIONS AND CONSUMERS	248
Mykola Pechenik, Serhii Burian, Ihor Khudia, Pushkar Mykola and Vitalii Torwooy	
Operation Modes Investigation of Cascade Pump Unit Using Refining Hydraulic Network Model	249-252
Nina Filimonenko. Kostiantyn Filimonenko and Hryhoriy Melkonov	
Peculiarities of the Reconstruction of the Relay Protection of a Transformer Substation	253-257
Joaquim Monteiro, Vitor Pires, Fernando Silva and Sonia Pinto	
A Model Predictive Controller for a Buck-Boost Rectifier of an Electric Vehicle Integrated Battery Charger with a Dual-Inverter Drive	258-263
Yevhen Pistun, Halyna Matiko and Hanna Krykh	
Algorithmization of designing gas-hydrodynamic measuring transducers using structural and parametric optimization	264-268
Mykhailo Seheda, Petro Gogolyuk and Yurii Blyznak	
Mathematical model of analysis of wave electromagnetic transients in three-winding transformers	269-272

Yevgeniy Trotsenko, Volodymyr Brzhezitsky, Yaroslav Haran, Andrii Derzhuk and Mandar Dixit	272 276
Ultimate Effect of Non-Identity of Resistive Elements of High-Voltage Arm on Amplitude-Frequency Characteristic of Voltage Divider (Numerical Results)	2/3-2/0
Kateryna Bratkovska, Pavlo Makhlin, Alexander Shram, Dmytro Kulagin and Denys Fedosha	
Estimation of Optimization Approaches of the Energy Intensive Equipment's Power- Time Diagrams of Industrial Enterprises	277-281
Victor Khilov, Natalija Glukhova, Ludmila Pesotskaya and Sergii Fedorov	
Using Fuzzy Control Principles to Improve the Electromagnetic Compatibility of Electrical Supply and Electromechanical Systems	282-287
Valentyn Glyva, Larysa Levchenko, Natalia Ausheva and Oksana Tykhenko	
The propagation of electromagnetic fields of energy facilities modeling in the context of energy saving and public safety	288-291
Sergei Peresada, Yevhen Nikonenko and Serhii Kovbasa	
Field-weakening methods for torque-flux direct field-oriented control of induction motors	292-296
Stefan Zaichenko, Serhii Denysiuk, Göktay Ediz, Umran Ercetin, Denys Derevianko and Volodymyr Dubovyk	207 201
Comparison of energy efficiency of a synchronous electric generator with a spark ignition engine using liquefied petroleum gas and gasoline	297-301
Mykola Buryk, Mykola Ostroverkhov and Ivan Buryk	
Robust Vector Control of the Interior Permanent Magnet Synchronous Motor with a Strategy of Maximum Torque per Ampere	302-307
Vitalii Teriaiev, Anton Dovbyk and Vladislav Kornienko	200 212
Combined Algorithm of Improved Frequency Control of Linear Induction Motors	508-512
Vladimir Voytenko, Vladimir Vodichev and Alexander Kalinin	
<i>Optimization of the Stator Current Vector Control System of the Electric Vehicle Drive with Induction Motor</i>	313-318
Santi Behera, Kishor Sasmal, Sasmita Behera, Nimay Chandra Giri, Olena Rubanenko and Mohit Bajaj	210 222
Design and Control of 11-Level Modular Multilevel Converter with Dual Purpose Inverter for Grid Connected Photovoltaic System	519-525
Volodymyr Gritsyuk, Igor Nevliudov, Mykola Zablodskiy, Vasyl Shynkarenko, Yevhen Rudniev, Leonid Ivanov and Dmytro Yanushkevych	274 279
Numerical Analysis of Thermal Processes in an Electromechanical Pump-Heat Generator	324-320
Kseniia Minakova, Roman Zaitsev and Mykhailo Kirichenko	370-331
Control and cooling of the electronic load solution based on FET-transistor	527-554
Vitor Fernao Pires, Armado Pires, Daniel Foito, Miguel Chaves and Armando Cordeiro	335-340
A Fault Tolerant Multilevel Converter Topology for an 8/6 SRM Drive Based on a Cross-Switched Configuration	

2022 IEEE 8th International Conference on Energy Smart Systems (ESS)	
Volodymyr Nerubatskyi, Oleksandr Plakhtii and Denys Hordiienko	241 246
Adaptive Modulation Frequency Selection System in Power Active Filter	341-340
Marina Rezinkina	
Protective Coatings Providing Safety and Electromagnetic Durability of Electronics of the Smart Grids	347-350
Konstantin Nemchenko, Tatiana Vikhtinskaya and Valeria Kopyakova	251 252
Using of search methods for effective three-phase feeder load balancing	351-352
Borys Kuznetsov, Ihor Bovdui, Nikitina Tetiana, Valerii Kolomiets and Borys Kobylianskyi	
Adjustment of Two Circuits System of Active Shielding of the Magnetic Field Generated by Overhead Power Lines	353-350
Andrii Dymerets, Alexey Gorodny, Roman Yershov, Anatoliy Revko and Serhii Stepenko	
Static Characteristics of Zero-Current-Switching Quasi-Resonant Boost Converter under Variation of Resonant Circuit and Load Parameters	357-362
SECTION 5. POLICIES, MARKETS AND CHALLENGES	363
Oleksandr Vatrenko and Mykola lakymchuk	364-367
Energy aspects of thin round elastic plates' stability loss	
Elena Dzhyhun	269 271
Study of the impact of climate change on the volume of electricity production at HPPs in	JUA-J/ I
Ukraine	000 071
Ukraine Serhii Denysiuk, Denys Derevianko, Halyna Bielokha and Stefan Zaichenko	372-377
Ukraine Serhii Denysiuk, Denys Derevianko, Halyna Bielokha and Stefan Zaichenko Cost effective reliability improvement methods in power systems with renewables	372-377
Ukraine Serhii Denysiuk, Denys Derevianko, Halyna Bielokha and Stefan Zaichenko Cost effective reliability improvement methods in power systems with renewables Iryna Kameneva and Elena Dzhyhun	372-377
Ukraine Serhii Denysiuk, Denys Derevianko, Halyna Bielokha and Stefan Zaichenko Cost effective reliability improvement methods in power systems with renewables Iryna Kameneva and Elena Dzhyhun Forecasting the state of water resources to balance loads and increase the stability of the energy sector	372-377 378-381
Ukraine Serhii Denysiuk, Denys Derevianko, Halyna Bielokha and Stefan Zaichenko Cost effective reliability improvement methods in power systems with renewables Iryna Kameneva and Elena Dzhyhun Forecasting the state of water resources to balance loads and increase the stability of the energy sector Andrii Antonov and Dmytro Bosiy	372-377 378-381
Ukraine Serhii Denysiuk, Denys Derevianko, Halyna Bielokha and Stefan Zaichenko Cost effective reliability improvement methods in power systems with renewables Iryna Kameneva and Elena Dzhyhun Forecasting the state of water resources to balance loads and increase the stability of the energy sector Andrii Antonov and Dmytro Bosiy Renewable electricity sources selection based on the economy applied approach	372-377 378-381 382-385
Ukraine Serhii Denysiuk, Denys Derevianko, Halyna Bielokha and Stefan Zaichenko Cost effective reliability improvement methods in power systems with renewables Iryna Kameneva and Elena Dzhyhun Forecasting the state of water resources to balance loads and increase the stability of the energy sector Andrii Antonov and Dmytro Bosiy Renewable electricity sources selection based on the economy applied approach Oleksandr Zaporozhets, Larysa Levchenko, Valentyn Glyva and Nataliia Burdeina	372-377 378-381 382-385
Ukraine Serhii Denysiuk, Denys Derevianko, Halyna Bielokha and Stefan Zaichenko Cost effective reliability improvement methods in power systems with renewables Iryna Kameneva and Elena Dzhyhun Forecasting the state of water resources to balance loads and increase the stability of the energy sector Andrii Antonov and Dmytro Bosiy Renewable electricity sources selection based on the economy applied approach Oleksandr Zaporozhets, Larysa Levchenko, Valentyn Glyva and Nataliia Burdeina Environment impact assessment for new wind farm developments in Ukraine	372-377 378-381 382-385 386-389
Ukraine Serhii Denysiuk, Denys Derevianko, Halyna Bielokha and Stefan Zaichenko Cost effective reliability improvement methods in power systems with renewables Iryna Kameneva and Elena Dzhyhun Forecasting the state of water resources to balance loads and increase the stability of the energy sector Andrii Antonov and Dmytro Bosiy Renewable electricity sources selection based on the economy applied approach Oleksandr Zaporozhets, Larysa Levchenko, Valentyn Glyva and Nataliia Burdeina Environment impact assessment for new wind farm developments in Ukraine Nickolai Bolotnyi, Oleksii Karmazin and Olexandr Ostapchuk	372-377 378-381 382-385 386-389
Ukraine Serhii Denysiuk, Denys Derevianko, Halyna Bielokha and Stefan Zaichenko Cost effective reliability improvement methods in power systems with renewables Iryna Kameneva and Elena Dzhyhun Forecasting the state of water resources to balance loads and increase the stability of the energy sector Andrii Antonov and Dmytro Bosiy Renewable electricity sources selection based on the economy applied approach Oleksandr Zaporozhets, Larysa Levchenko, Valentyn Glyva and Nataliia Burdeina Environment impact assessment for new wind farm developments in Ukraine Nickolai Bolotnyi, Oleksii Karmazin and Olexandr Ostapchuk Analysis of Prospects for Electrical Energy Storage Application in Power Supply Systems of Ukraine	372-377 378-381 382-385 386-389 390-395
 Ukraine Serhii Denysiuk, Denys Derevianko, Halyna Bielokha and Stefan Zaichenko Cost effective reliability improvement methods in power systems with renewables Iryna Kameneva and Elena Dzhyhun Forecasting the state of water resources to balance loads and increase the stability of the energy sector Andrii Antonov and Dmytro Bosiy Renewable electricity sources selection based on the economy applied approach Oleksandr Zaporozhets, Larysa Levchenko, Valentyn Glyva and Nataliia Burdeina Environment impact assessment for new wind farm developments in Ukraine Nickolai Bolotnyi, Oleksii Karmazin and Olexandr Ostapchuk Analysis of Prospects for Electrical Energy Storage Application in Power Supply Systems of Ukraine Ihor Blinov, Volodymyr Miroshnyk and Viktoriia Sychova 	372-377 378-381 382-385 386-389 390-395
Ukraine Serhii Denysiuk, Denys Derevianko, Halyna Bielokha and Stefan Zaichenko Cost effective reliability improvement methods in power systems with renewables Iryna Kameneva and Elena Dzhyhun Forecasting the state of water resources to balance loads and increase the stability of the energy sector Andrii Antonov and Dmytro Bosiy Renewable electricity sources selection based on the economy applied approach Oleksandr Zaporozhets, Larysa Levchenko, Valentyn Glyva and Nataliia Burdeina Environment impact assessment for new wind farm developments in Ukraine Nickolai Bolotnyi, Oleksii Karmazin and Olexandr Ostapchuk Analysis of Prospects for Electrical Energy Storage Application in Power Supply Systems of Ukraine Ihor Blinov, Volodymyr Miroshnyk and Viktoriia Sychova Comparison of models for short-term forecasting of electricity imbalances	372-377 378-381 382-385 386-389 390-395 396-399
 Ukraine Serhii Denysiuk, Denys Derevianko, Halyna Bielokha and Stefan Zaichenko Cost effective reliability improvement methods in power systems with renewables Iryna Kameneva and Elena Dzhyhun Forecasting the state of water resources to balance loads and increase the stability of the energy sector Andrii Antonov and Dmytro Bosiy Renewable electricity sources selection based on the economy applied approach Oleksandr Zaporozhets, Larysa Levchenko, Valentyn Glyva and Nataliia Burdeina Environment impact assessment for new wind farm developments in Ukraine Nickolai Bolotnyi, Oleksii Karmazin and Olexandr Ostapchuk Analysis of Prospects for Electrical Energy Storage Application in Power Supply Systems of Ukraine Ihor Blinov, Volodymyr Miroshnyk and Viktoriia Sychova Comparison of models for short-term forecasting of electricity imbalances Oleksandr Novoseltsev, Oleksandr Kovalko, Tatyana Eutukhova and Maria Yevtukhova 	372-377 378-381 382-385 386-389 390-395 396-399 400-404
Ukraine Serhii Denysiuk, Denys Derevianko, Halyna Bielokha and Stefan Zaichenko Cost effective reliability improvement methods in power systems with renewables Iryna Kameneva and Elena Dzhyhun Forecasting the state of water resources to balance loads and increase the stability of the energy sector Andrii Antonov and Dmytro Bosiy Renewable electricity sources selection based on the economy applied approach Oleksandr Zaporozhets, Larysa Levchenko, Valentyn Glyva and Nataliia Burdeina Environment impact assessment for new wind farm developments in Ukraine Nickolai Bolotnyi, Oleksii Karmazin and Olexandr Ostapchuk Analysis of Prospects for Electrical Energy Storage Application in Power Supply Systems of Ukraine Ihor Blinov, Volodymyr Miroshnyk and Viktoriia Sychova Comparison of models for short-term forecasting of electricity imbalances Oleksandr Novoseltsev, Oleksandr Kovalko, Tatyana Eutukhova and Maria Yevtukhova Service-Oriented Logic of Using Information Technologies in the Circular Economy	372-377 378-381 382-385 386-389 390-395 396-399 400-404

Renewable electricity sources selection based on the economy applied approach

1st Andrii Antonov Intelligent Energy Supply Systems Department Ukrainian State University of Science and Technologies Dnipro, Ukraine a.v.antonov91@gmail.com

Abstract— The aim of the work is to develop an economically justified approach to the selection of renewable sources of electricity. This aim is achieved by construction an automated algorithm that takes into account a set of restrictions for creating the optimal structure of a photovoltaic station. The work confirms the influence of such factors on project implementation as: electricity consumption schedule, built-up area, photovoltaic station mounting system type, allocated amount of money for project implementation, fixed and variable costs for maintenance of photovoltaic station, cost of electricity. The results of an economically justified approach to the selection of renewable sources of electricity at a real photovoltaic station are given. Indicators such as pay-back period and cash flow were calculated, which show the feasibility of the proposed approach.

Keywords— renewable, energy, photovoltaic, electricity, station, pay-back period, cash flow

I. INTRODUCTION

In modern conditions, the share of electricity in the unit cost of production is quite significant and with the increase in electricity tariffs, it becomes even more significant.

It is possible to achieve the minimization of electricity consumption in production, increase environmental standards and profitability of production by introducing renewable energy facilities into existing technological processes [1, 2].

The above is in line with the aim set by 2030 to make all sectors of the European Union's (EU) economy climate neutral [3, 4, 5].

At the same time, the widespread use of renewable energy facilities significantly reduces dependence on hydrocarbons, which in 2022 has become a means of energy blackmail.

The development of renewable energy creates new opportunities for [6, 7]:

- development of science and technology;

- attraction of investments;

- creation of new jobs;

- reduction of energy dependence;

- improvement of health and well-being;

- transition to ecological mobility.

The European Green Deal opens up great opportunities for European industry and the industries of those countries that are integrating into the European Union [8].

New technologies annually make it possible to make renewable energy facilities more flexible and functional. This 2nd Dmytro Bosyi Intelligent Energy Supply Systems Department Ukrainian State University of Science and Technologies Dnipro, Ukraine dbs@mm.st

allows you to influence entire value-added chains: energy, transport, production, agriculture and construction [9, 10].

II. THE MAIN MATERAIL

Photovoltaic (PV) stations are the most effective, cheap and simple source of electricity. Which are scalable systems, the functioning of which can be carried out both in autonomous, hybrid and fully synchronized with the power system mode.

Of course, the use of PV stations as autonomous power supply systems is quite complicated and expensive, due to the need to store the produced electricity in batteries and the variability of generation of electricity.

Therefore, the most flexible and effective way of using PV stations is to use them for partial compensation of one's own electricity needs. The investment climate of such an event significantly increases when the legislation on Net Metering or Net Billing is in force in the country [11].

At the same time, the appearance of a large number of players in the electricity market will create a supply that will lead to a decrease in the cost of electricity. At this stage, hydrogen energy becomes relevant as a means of storing cheap energy for use at times of peak consumption [12].

Of course, for the political leadership, the departure from carbon energy is difficult and even dangerous, from the point of view of the structure of some countries' economy. But the rate of spread of renewable sources of electrical energy will in any case encourage the development of green hydrogen [13].

Building close relationships and clear coordination of actions between the energy sector and other sectors of the economy will ensure the greatest efficiency from the use of energy from renewable sources.

Such a structure will have a positive impact not only on the development of industry, but also on the improvement of the situation on the labor market, social protection of the population and the training of qualified personnel at all stages of training in educational institutions.

The construction of a PV station to compensate for one's own needs is an investment project designed to solve several problems at once:

- compensation of electricity consumption;

- increasing energy independence;

- reducing the impact on the environment during production;

- improvement of the quality indicators of electricity in the power system;

- making a positive impact on the electricity market;

- stimulating the development of green energy in general.

Accordingly, for each such project, it is necessary to carry out a technical and economic justification, which should show its attractiveness.

Thus, the main indicators for assessing the rate of return on investment of such a project are the investment payback period (PBP) and CASH FLOW.

It is possible to achieve the optimization of which by taking into account all the factors that affect the efficiency of the photovoltaic plant in question.

The PBP can be calculated using the formula:

$$PBP = \frac{CAPEX}{EBITDA}$$
(1)

where CAPEX – investment amount, €.

EBITDA – Earnings before Interest, Taxes, Depreciation and Amortization, \in .

At the same time, the EBITDA can be presented as follows:

$$EBITDA = SP \cdot P_{SPP} \cdot RC \cdot EP - OPEX$$
(2)

where SP - Specific Production, kWh/kWp/year, this parameter depends on the type of Mounting System type (MS_{type}), Coverage Area (CA), and the location of the PV

station: $SP = f(MS_{type}, CA, Location)$.

OPEX – Operating Expenses, \in , are defined as the sum of Fixed Costs (FC) and variable costs (VC);

RC – Restriction Coefficient (RC = 1);

 $EP - Electricity Price, \in$.

 P_{SPP} – installed capacity of solar power plant, kW.

Installed capacity of solar power plant is directly dependent on the Estimated Power Consumption (EPC), MS_{type} and $CA : P_{SPP} = f(EPC, MS_{type}, CA)$.

In this case, credit funds and payment of taxes on profit are not considered, so CASH FLOW will be defined as the difference between CAPEX and EBITDA.

Based on the above, the following can be formulated. For an average PV station, there are a number of parameters that set limits for its construction and evaluation of the efficiency of operation:

- electricity consumption schedule;

- coverage area;

- mounting system type;

- allocated amount of money for the implementation of the project;

- constant and variable costs for maintenance of the photovoltaic installation;

- electricity price.

Accordingly, taking into account these restrictions, such a renewable energy facility as a PV station will bring the most benefit to the owner.

Summarizing the given statements and based on many years of experience, an approach to solving the problems of implementing PV stations has been formed.

It is presented in the form of an algorithm (Fig. 1) and the above formulas. They combine both technical and economic factors that affect the implementation of the project of building a PV station.

Taking them into account makes it possible to achieve the selection of optimal solutions that will satisfy the needs of the customer.

As an example, let's consider the results of this approach at one of the facilities, which was implemented by SOLAR STEELCONSTRUCTION LLC in 2022.

This is a small public facility that operates during daylight hours and provides services to citizens.

Fig. 1. Algorithm of an economically justified approach to the selection of renewable sources of electricity

The first limitation for this object was the schedule of electric energy consumption, which is built on the basis of the results of instrumental measurement, Fig. 2.

Fig. 2. Schedule of electricity consumption during the day

In the course of a staff survey and analysis of available information on annual electricity consumption, it was established that the constructed consumption schedule is typical for the entire year. There is a slight decrease in electricity consumption on weekends.

The second limitation was the available roofs area of the object, which is 750 m^2 of usable area.

The third limitation was the use of modular mounting system SRS-EW type from SOLARsk, which allow for the most efficient use available roofs area of the object, Fig. 3 (a) SRS-EW type sample, b) photo of the built station).

Fig. 3. Modular mounting system SRS-EW type from SOLARsk

As a result, 140.8 kW of the installed power of photo modules was placed on the roof of the building, on which various equipment was located.

Funding was not a constraint in this case.

As a result, after conducting engineering research, the equipment was selected and calculations were made to forecast the generation of electricity during the year. The calculations took into account the influence of all meteorological factors and losses. The following results were obtained, Fig. 4.

Fig. 4. Forecasted monthly generation of electricity by a PV station

The forecasted electricity generation schedule given is the initial information for conversion into a monetary unit and calculation of monthly EBITDA and CASH FLOW.

Accordingly, taking into account the available information about the company's electricity consumption and project generation, we built a diagram that reflects the CASH FLOW by years, Fig. 5.

Fig. 5. CASH FLOW for 10 years of PV station operation

The information on the CASH FLOW which presented graphically, clearly shows the rate of return on investments and PBP.

Since this object is built, it is possible to assess how exactly this PV station functions. We present the results of the operation of the PV station on a sunny summer day, Fig. 6.

Fig. 6. The results of the electricity producing by PV station during sunny summer day

III. CONCLUSIONS

The presented results show that the generated electricity is consumed in full, while it can be noted that the power of the PV station isn't enough to cover the electricity consumption of this object. This is determined by the existing limitation on the roof area.

Of course, not all objects have a schedule of electricity consumption that is related to daylight hours, but for each case, a separate solution can be found.

Taking into account all the restrictions for this object made it possible to select the most optimal PV station from both a technical and an economic point of view

This article confirmed the greatest impact on the implementation of the project of such factors as: schedule of electricity consumption, coverage area, mounting system type, allocated amount of money for the implementation of the project, fixed and variable costs for maintenance of the photovoltaic installation, cost of electricity.

The correctness and expediency of the formed economically justified approach to the selection of renewable sources of electricity is confirmed by the relevant indicators of the rate of return on investment – PBP and CASH FLOW, as well as the physical implementation of this project.

REFERENCES

- Viktor, S., Antonov, A., and other "Increased controllability of the distributed traction system in emergency mode". 2020 IEEE 7th International Conference on Energy Smart Systems, ESS 2020 -Proceedings, 2020, pp. 58–62.
- [2] Bosyi, D. O. "Modeling of the Controlled Traction Power Supply System in the Space-Time Coordinates". Transport Problems. – 2017. – № 12 (3). – P. 5–19.
- [3] IRENA. Renewable Power Generation Costs in 2019; International Renewable Energy Agency: Abu Dhabi, 2020.
- [4] IRENA. Global Renewables Outlook: Energy Transformation 2050; International Renewable Energy Agency: Abu Dhabi, 2020.
- [5] IEA, Renewables 2018 Analysis and forecasts to 2023, Organisation for Economic Co-operation and Development/International Energy Agency, Paris, 2018.
- [6] "European Union. Directive (EU) 2019/943 of the European Parliament and of the council of 5 June 2019 on the internal market for electricity". Off. J. Eur. Union 2019, L158, 54–124.
- [7] "European Union. Directive (EU) 2019/944 of the European Parliament and of the council of 5 June 2019 on common rules for the

internal market for electricity and amending Directive 2012/27/EU". Off. J. Eur. Union 2019, L158, 125–199.

- [8] "The European Green Deal", Brussels, 11.12.2019.
- [9] BNEF, Clean energy investment trends 2018, Bloomberg New Energy Finance, London, 2019.
- [10] IEA et al., Tracking SDG 7: The energy progress report 2019, International Energy Agency, International Renewable Energy Agency, United Nations Statistics Division, World Bank and World Health Organisation.
- [11] Law of Ukraine "In the Law of Ukraine "On Alternative Energy Sources". Bulletin of the Verkhovna Rada of Ukraine, 2003, No. 24, Art. 155
- [12] Buttler, Alexander, and Hartmut Spliethoff. 2018. "Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review." Renewable and Sustainable Energy Reviews 82 (Part 3): 2440-2454.
- [13] IRENA, Hydrogen: A renewable energy perspective, International Renewable Energy Agency, Abu Dhabi, 2019.