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Abstract. The paper outlines the basic principles of constructing 
frequency diagrams and specifies the features of their application for the 
analysis of the dynamic state of the vehicle drive with cable traction on the 
example of a ropeway. To draw up the frequency diagrams, the ropeway 
traction circuit was presented as a dynamic system containing lumped 
masses and elements with distributed parameters. In this case, the moments 
of inertia of the rotating masses of the drive were brought to the traction 
pulley as a lumped mass. The traction cable segments are represented as 
elements with distributed parameters. The mathematical model describing 
the dynamic state of the drive consists of equations in the form of 
deformations of the traction cable segments using the positions of wave 
mechanics. Studies have shown that in most cases there is a fairly wide 
inter-resonance band, limited by the first and second eigenfrequencies. 
This phenomenon may be the basis for justifying the rational values of the 
rotational speed of the pulley as one of the kinematic parameters of the 
ropeway drive. 

1 Introduction 

A lot of means of industrial transport have a flexible traction unit, among them belt and 
chain conveyor; vertical and inclined mine lifts. These machines also include tools with 
cable traction: hanging conveyors, monorail cable cars and ropeways. They differ in 
industries and technology, but the common feature is the presence of a drum drive (for belt 
conveyors), with one sprocket or a few sprockets (for chain conveyors and some hanging 
conveyors), or with a traction pulley (for mine lifts and ropeways). Instability of its 
operation (in particular, during transient modes) can lead to emergency situations. 
Therefore, the studies of the dynamic state of the vehicle drive with cable traction in order 
to prevent processes that disrupt its normal operation are relevant. 

One of the measures to prevent the instability of the drive and to avoid emergencies 
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when using the means of industrial transport is to limit the speed of the traction unit and the 
associated working elements (scrapers for the chain conveyor, overhead conveyor car, cable 
car, etc.). However, this does not allow controlling the dynamic processes during the start-
up period, in particular, to prevent and limit resonant phenomena. 

To analyze the eigenfrequency spectrum of a vehicle drive with a cable traction under 
which there are resonance phenomena, it is convenient to use frequency diagrams that 
reflect the eigenfrequency as a function of moving the working element. By imposing on 
such diagrams a tachogram of the drive, it is possible to conclude about the safety of the 
vehicle as a dynamic system, determining the number of hazardous resonant zones that the 
drive pass during acceleration and deceleration, as well as the frequency and (for certain 
additional calculations) amplitudes of oscillations in the resonant zones. In addition, the 
inverse problem solution allows the development of rational tachograms of the drive to 
prevent the occurrence of resonant phenomena. 

Consider the features of the frequency analysis of the vehicle drive with cable traction 
on an example of a ropeway. 

2 Analysis of publications 

Some results of research on rational design and effective use of ropeway elements are given 
in [1-3]. However, most of them are due to calculations based on static formulas. 

The work [4] is devoted to study on the dynamic load of ropeway elements. That paper 
considers the processes in traction ropes, but only transverse oscillations are taken into 
account; the effect of these processes on the dynamics of the drive is not taken into account. 

The importance of applying an integrated approach to evaluate the load of ropeway 
elements is confirmed by foreign experience [5-10]. However, the recommendations based 
on the analysis of the eigenfrequency spectrum of the drive have not been detected. 

The formation of basic approaches to the construction and analysis of the 
eigenfrequency spectrum of the drive by frequency diagrams was begun in the works [11, 
12]. However, the materials contained therein don’t apply to ring-type ropeways. 

3 Purpose of work 

The purpose of this work is to develop the basic principles of constructing frequency 
diagrams and to formulate approaches to the application of such diagrams during the 
analysis of the dynamic state of vehicle drives with cable traction on the example of 
ropeway. 

4 Theoretical studies 

To compile frequency diagrams of the drive, we consider the traction circuit of cableway as 
a dynamic system, which includes a drive, a traction cable with a tensioner and cars 
(Fig. 1). In this case, we replace the components of the drive by three lumped masses – the 
rotor of the electric motor, the gear unit and the pulley. These masses are interconnected by 
elastic weightless connections. The cars and the tensioner are interconnected by segments 
of a traction cable as elements with distributed parameters. 

In this problem statement, a mathematical model describing the dynamic state of a 
system consists of differential equations in ordinary derivatives and partial differential 
equations. Solution the system of this equation in order to obtain the frequency function is 
complicated, so within the scope of this work we perform the replacement the schema 
shown in Fig. 1 by simplified schema (Fig. 2). The peculiarity of this approach is to bring 
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the masses of the drive to the pulley, which allows us to restrict the use of differential 
equations in partial derivatives during the compilation of a mathematical model. 

In order to formulate the description of the mathematical model, we introduce the 
following concepts: 

 number of cars in one direction of travel (n) – the number of cars that are 
simultaneously located on the area between the pulley and the tensioner as lumped 
masses (constructively between the drive and tension stations) and move in one 
direction; thus the total number of cars is 2n; 

 lower car – a car moving from the lower station to the upper; 
 upper car – a car moving from the upper station to the lower one; 
 lower direction of movement – the section of the route, along which the lower cars 

move; 
 upper direction of movement – the section of the route, along which the upper cars 

move. 

 

Fig. 1. Ropeway traction circuit: 1 – the rotor of the electric motor; 2 – mass of the gear unit;  
3 – pulley; 4 – the traction cable segments; 5 – tensioner; 6 – cars 

 

Fig. 2. Simplified model of the ropeway traction circuit (designation according to Fig. 1) 

In absolute terms these statements are valid for ropeways, whose profile changes 
monotonically; that is the difference in elevation between two adjacent reference points in 
the upper direction of motion is always positive, and in the lower direction of motion it is 
negative. In the case of changes in the profile curvature, these concepts can be used for 
each span individually, and then combine into a common simulation system. 
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For the convenience of compiling a mathematical model we use a substitution scheme 
in which all masses make translational movement [13] (Fig. 3, a). In this case, the feature of 
such a scheme for the traction circuit of ropeway is its closeness, which determines a 
certain specificity of the formation of equations. It is reflected in the application of 
additional forces that characterize the mutual influence of finite masses (Fig. 3, b). 

 

Fig. 3. Substitution scheme: a – general view; b – with additional force applied 

In the substitution scheme we use the following notation: 

pm  – mass of the pulley (equivalent weight of all elements of the drive); 

tm  – mass (equivalent to the working force) of the tensioner; 
l
im  – mass of the i-th lower car ( ni ,1 ); 
u
im  – mass of the i-th upper car ( ni ,1 ); 

1
lu  – elastic deformation of the traction cable segment between the pulley and the first 

car in the lower direction of movement; 
l
iu  – elastic deformation of the traction cable segment between (n-1)-th and i-th cars in 

the lower direction of movement ( ni ,2 ); 

1
l
nu   – elastic deformation of the traction cable segment between the i-th car in the 

lower direction of movement and the tensioner; 

1
uu  – elastic deformation of the traction cable segment between the pulley and the first 

car in the upper direction of movement; 
u
iu  – elastic deformation of the traction cable segment between (n-1)-th and i-th cars in 

the upper direction of movement ( ni ,2 ); 

1
u
nu   – elastic deformation of the traction cable segment between the i-th car in the 

upper direction of movement and the tensioner; 

1
lS , l

iS , 1
l
nS  , 1

uS , u
iS , 1

u
nS   – elastic forces that correspond to deformations 1

lu , l
iu , 

1
l
nu  , 1

uu , u
iu , 1

u
nu  ; 

 
l

l i
i

u
S EF

x





;        

u
u i
i

u
S EF

x





,        1,1  ni , (1) 

E, F – the elastic modulus and the area of the traction cable cross-section. 
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According to the indicated symbols, the mathematical model describing the dynamic 
state of the drive consists of equations in the form of deformations of the traction cable 
segments using the positions of wave mechanics [13]: 

 

2 2
2

2 2

2 2
2

2 2

;

,

l l

u u

U a U
t x

U a U
t x

  


 

   

 (2) 

l l
iU u     – vector of deformations of the traction cable segments on the lower direction of 

the car movement ( 1,1  ni ); u u
iU u     – vector of deformations of the traction cable 

segments on the upper direction of the car movement ( 1,1  ni ); a – the propagation 

velocity of the elastic wave in the longitudinal direction of oscillation. 
In order to simplify the recording, we introduce the following notation: 

1

i
l l
i j

j
x l


   – coordinate of the i-th car in the lower direction of movement; 

1

i
u u
i j

j
x l


   – coordinate of the i-th car in the upper direction of movement; 

/l l
i iql m   – mass coefficient of the i-th car in the lower direction of movement; 

/u u
i iql m   – mass coefficient of the i-th car in the upper direction of movement; 

/p pql m   – mass coefficient of the pulley; 

/t tql m   – mass coefficient of the traction cable tensioner; 

kl  – the actual number of the frequency function (k is a certain constant used in the 
transformation of the system of equations [13]); 

А, В (with any indexes) – amplitude coefficients. 
Also consider the following parameters of the traction cable: Е – elastic modulus;  

F – cross-section area; q – linear mass; l – the length of the traction cable segments between 
the pulley and the tensioner as lumped masses in one direction of movement. 

For equations in the form of the first expression of the system (2), which describe the 
movement of the i-th car in the lower direction, the boundary conditions have the form 

( ni ,1 ): 

 
2

1
2

l l
i i

l l l
l i i i
i

x x x x

u u u
m EF

x xt


 

   
      

;                1, ,l l l l
i i i iu x t u x t . (3) 

For equations in the form of the second expression of the system (2), which describe the 
movement of the i-th carriage in the upper direction, the boundary conditions have the form 

( ni ,1 ): 

 
2

1 1
2

u u
i i

u u u
u i i i
i

x x x x

u u u
m EF

x xt
 

 

   
      

;            1, ,u u u u
i i i iu x t u x t . (4) 

To combine the equations (3) and (4) with the system and to ensure the closeness of the 
traction circuit, we use the conjugation conditions at the traction cable segments near the 
pulley and the tensioner. We make such expressions in the form of boundary conditions to 
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differential equations which describe the movement of the pulley and the tensioner as 
lumped masses mp and mt respectively. 

According to the above notation, the boundary conditions for the equation describing 
the movement of the pulley have the form: 

 
2

1 1 1
2

0 0

u u l

p

x x

u u u
m EF

x xt  

   
      

;              1 10, 0,l uu t u t , (5) 

1 1 0u lx x x    – pulley coordinate. 

The boundary conditions for the equation describing the motion of the tensioner are as 
follows: 

 

1 1 1

2
1 1 1

2
l l u
n n n

l l u
n n n

t

x x x

u u u
m EF

x xt
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 

        
 

;      1 1 1 1, ,u u l l
n n n nu x t u x t     . (6) 

After separating the variables in equations (3) – (6), we combine the results obtained 
with the system (7). 
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 (7) 

The frequency function is established as a determinant of the matrix of the coefficients 
of the system (7). The zero arguments of this function (such that the function acquires a null 
value) are the eigenvalues λ, by which we determine the eigenfrequencies of the ropeway 
traction circuit as a dynamic system: 
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q

EF

l


 . (8) 

Taking into account that the ropeway traction circuit is modeled as a system of lumped 
masses (pulley, cars and tensioner) connected by elastic elements with distributed 
parameters (traction rope segments), the frequency function has a set of zero arguments, 
and hence the drive as the dynamic system has a set of eigenfrequencies ω, which are 
determined by their eigenvalues λ. 

We note that the frequency diagram shows the change of the eigenfrequencies of the 
drive during the movement of cars between stations. Examples of frequency diagram under 
the condition of the same loading of cars are shown in Fig. 4 (shows the first three 
eigenfrequencies). Compared to the second and third, the first frequency is relatively 
constant, since it is largely determined by the pulley mass. The coordinates of cars have 
a significant influence on the second and third eigenfrequencies, which explains the 
substantial nonlinearity of the corresponding curves. For a ring-type ropeway, there is 
a certain cyclic change in the third frequency, with the number of cycles corresponding to 
the number of cars in one direction of movement. 

а 

 

b 

 

Fig. 4. Frequency diagrams of the ropeway drive: a – pendulum-type ropeway; b – ring-type ropeway 
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5 Conclusions 

In most cases, there is a fairly wide interresonance band, limited by the first and second 
eigenfrequencies. This phenomenon may be the basis for justifying the rational values of 
the rotational speed of the pulley as one of the kinematic parameters of the ropeway drive. 
The results obtained are valid for all ropeways (both pendulum-type and ring-type) by the 
nature of the frequency diagram; however, the frequency values may vary, depending on 
the ropeway technical characteristics. For other vehicles with cable traction: for belt and 
chain conveyors, the degree of nonlinearity of frequency diagrams depends on the uniform 
distribution of cargo on the carrying surface; for hanging conveyors, the nature of the 
frequency diagrams is similar to that for a ring-type ropeways; frequency diagrams for mine 
lifts drives are similar to the pendulum-type ropeway diagrams but they are characterized 
by greater symmetry of the curves of the second and third eigenfrequencies for vertical 
lifting. 
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