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ABSTRACT

A two-criteria optimization problem for thin-walled members of open cross-section with one
axis of symmetry (of the channel type) subjected to compression or /and bending in the
symmetry plane under stability constraints is solved. The objective function vector components
are the axial compressive force and the bending moment. Optimal configurations of thin-walled
members for marginal cases of loading - axial compression or pure bending - are obtained,
Pareto-optima are constructed and «compromise» optimal projects are derived as a function of a
single leading nondimensional parameter of weight. The obtained optimal projects are
universal, in distinction from the optimal projects for special loading cases, and applicable
under arbitrary combination of compression and bending. Comparison of standard profiles
(specified by the design codes) with the optimal projects enables us to indicate «bad» standard
profiles which are far from optimal ones under any loads.
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INTRODUCTION

The minimum weight design problems for thin-walled bars - beams under compression or
bending with respect to their stability were investigated in a few works already in 60-70-s on
the base of various theoretical models (see review by Zyczkowski & Gajewski (1983)) and
were refined later (Yoshida & Maegawa (1979), Manevich & Raksha (2000) and others).
Optimal profiles of compressed or bent thin-walled members which are found for the separate
loads are essentially different As in exploitation they undergo, as a rule, the action of various
loads, separately or in a combination, there arises the question: what configuration of the
profile may be considered as optimal with account of such multifarious character of the
loading? This problem of the choice of a «compromise» optimal project may be formulated and
solved in the framework of the theory of multi-criteria optimization of structures (vector-valued
optimization) which was intensively elaborated in last decades.
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In the paper the two-criterion optimization problem for thin-walled members of open cross-
section with one axis of symmetry (of channel type) subjected to compression and bending (in
various combination), under stability constraints is solved. The objective function vector
components are axial compressive force and bending moment. An efficient method of
nonlinear programming is used for solving the optimization problem.

At the first stage optimal configurations of thin-walled members are derived for the marginal
cases of loading - axial compression or pure bending (with using exact linear solutions for local
buckling). Optimal dimensionless parameters are presented as a function of a single leading
parameters - a nondimensional weight parameter. At the second stage the Pareto-optima are
constructed in the plane (P- M,) where P is the compressive force and M, is the bending
moment. Finally, at the third stage «compromise» optimal projects are derived with using a
global criterion, comprising P and M.. The obtained optimal members are universal, in
distinction from the optimal projects for special loading cases, and applicable at arbitrary
combination of compression and bending.

Comparison of standard profiles (specified by the design codes) with the obtained optimal
projects enables us to indicate «bad» standard profiles which can not be optimal at any loads
considered.

STATEMENT OF THE PROBLEM AND THE METHOD OF SOLUTION

Let us consider a thin-walled member of open cross-section shown in Fig.1, simply supported
on its edges and subjected to compression and bending (in the symmetry plane) in various (a
priori unknown) combinations. The length L , force P, the material properties (elasticity
modulus E, Poisson’s ratio V) are considered given. The profile thickness ¢, widths of the web
and flange b,, b, are design variables (thickness of all elements is considered to be constant
implying cold-formed members).

¥

Figurel: Cross-sections of a bar and Figure 2: Buckling modes of a channel
design variables

The objective function depends upon formulation of the optimization problem We
consider sequentially following optimization problems:
1. The optimization with a single criterion - maximum of the critical compressive force P
or maximum of the bending moment M, for given total cross-section area.
2. Constructing Pareto-optimal cross-sections in the framework of the two-criteria
optimization problem.
3. Optimization with using a global criterion which comprises P and M,.
The optimization problems are stated as nonlinear programming ones. In the single-criterion
optimization for a compressed column the objective function is P = max min (P, P, P, ),
where P, P, P, are critical forces for the flexural (euler) mode in the symmetry plane, for
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torsional-flexural mode and local mode respectively (see. Fig.2). For a beam under pure
bending the objective function is M, = max min (M,; M,), tne M, M, are critical bending
moments for torsional-flexural mode (out-of-plane buckling) and for local buckling.

' The overall buckling stresses for the bar under compression or bending were calculated
according to the theory of thin-walled bars (f.e., Vlasov, 1959). The local buckling stresses
were calculated according to (Manevich & Raksha (1996)). All the plates that constitute the
thin-walled bar-beam are divided on several strips for which the longitudinal stress may be
considered as a constant, and the exact solution of the buckling problem is constructed by
conjugation of the solutions for all the strips, with exact conjugation conditions at the contact
lines (in distinction from the finite strips method which uses power approximations for
displacements). For each the strip with local coordinates (x, y) & the solution of the differential
equations of stability was assumed in the form w=w(7)sinmz& , n=y /L, E=x/L (xis
the longitudinal coordinate). Boundary conditions on free edges and conjugation conditions on
the contact lines result in a characteristic equation which determines the local critical stresses
(after minimization in m). All details of the calculations are dropped here.

Because of closeness of the critical stresses for a cluster of short-wave local modes it is
necessary to take into account many local modes. Note that dependencies of the local buckling
stresses on the half-wave number m can have two local minima, one of them being determined
by the web slendemess, another - by the flange slenderness. In view of these features the local
buckling stresses were calculated for a wide range of half-waves numbers, i.e. instead of one
constraint we consider a set of constraints (as a rule, for values m=2-25).

Strength constraints, as a rule, were not imposed, i.c. the assumption was assumed that the
material is elastic and the yield limit is sufficiently high. As it will be seen from the obtained
solution this assumption is valid in a range of relatively low values of the weight parameter G*
or the load parameter P* (see below), for usually employed steels and alloys. For other G*
values the presented solutions determine idealized optimal configurations.

The nonlinear programming (NP) problem was solved by the linearized method of reduced
gradient (Manevich (1979)).. This method realizing the idea of changing an independent
variables set in a vicinity of the admissible domain boundary by means of the linear operations
with the sensitivity matrices, effectively overcomes familiar difficulties arising at solving the
NP-problem (in particular, connected with zigzag-type motion in a boundary vicinity). Our
experience of many years employment of this algorithm has shown its high efficiency and
reliability. As a rule, 10 - 20 iterations were required to achieve the optimum with relative error
of order 107 .

For generality of analysis all the objective functions and constraints were formulated in
dimensionless parameters of weight, load and stress:

4 P
=7 -

M

I

10°, P*= 106, M*= 108, o‘*=%103, 3)

where A is the cross-section area (the scaling multipliers are introduced in order to deal with
parameters of order of unity). The cross-section also was characterized by nondimensional

geometric parameters b, / by, ¢/ b;.
RESULTS OF THE SOLUTION
All optimal nondimensional parameters are determined by specifying the single weight

parameter G* (all dimensional parameters are determined when additionally the length L is
given). We considered the range of parameter G* (0; 0.6) in which the assumption about elastic
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deformations of the material may be justified according to results of given solution (for usual
materials). In this range several values of G* have been chosen for which the optimization
problem was solved.

Optimization with a single criterion. Columns under compression or bending.

Solution of the optimization problem for centrally compressed columns of channel cross-
section based on the exact solution of the local buckling problem for the column as a plates
assemblage was obtained in Manevich & Raksha (2000). Here we present only some results of
the solution. For bars under pure bending earlier only approximate solutions have been obtained
based on simplified expressions for the local buckling stresses. Here an exact solution for this
case is presented.

The optimal columns under compression have equal critical stresses for the torsional-
flexural mode and one of the local modes. For overall bending mode (in the symmetry plane,
Fig.1) critical stresses are found to be higher by 15-25 %. The optimal beams under pure
bending also have equal critical moments for the torsional- flexural mode (out-of-plane
buckling) and one of the local modes.

The calculations show that the optimal profiles under compression as well as under bending
have nearly constant values of flange width to web width ratio in entire range of G* considered.

For compressed channels b, / b;=0.42 —0.43; .in the case of pure bending b, / bj= 0.53 -
0.56. The thickness parameter ¢/, depends upon G* as follows.

TABLE 1
PARAMETER #/b, FOR SINGLE-CRITERION OPTIMA

Parameter G* 0.1 0.2 0.3 0.4 0.5
t/b,
compression | 0.0139 | 0.0174 | 0.0200 | 0.0219 | 0.0238
bending 0.0223 | 0.0283 | 0.0323 | 0.0357 | 0.0389

Parameters of cross-sections, optimal for compression (max P*) and pure bending (max
M, *) are presented in Figure 3 versus the cross-section total area parameter G*. Optimal cross-
sections turn out to be rather different for compression and for bending.

-
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Figure 3: Nondimensional geometrical parameters of optimal bars in single-criterion
optimization and «compromise» projects.

The load parameters P* and M, versus the weight parameter G* for both single-criterion
optima are shown in Fig.4. The calculations show that for the single-criterion optima
dependencies of the critical force P* and critical moments in two planes M,” and My' upon G*
can be approximated with high accuracy (the error less than 1%) by the power functions. These
approximations are presented in Table 2.
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Figure 4: Load parameters P* and M, : versus the weight
parameter G* for the single-criterion optima.

TABLE 2
APPROXIMATIONS OF CRITICAL FORCES AND MOMENTS
VIA THE WEIGHT PARAMETER G* FOR SINGLE-CRITERION OPTIMA

Optimal bar under compression Optimal bar under pure
bending
P* =2.794 G*1:668 P* =2453G*1676
* =3805G*1978 M; = 6527G*19%°

M}, =16334G*200% M3, =14184G*1956
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We see that the optimal channel under condition max P* can carry out the moment M, which
approximately by 40 % less than the optimal channel for max M,*, and, correspondingly, the
latter bar can carry out the compressive force by 12 % lesser than the optimal bar for max P*.

Two-criteria optimization
Pareto-optima

There were constructed the Pareto-optima for two criteria max P* max M,* for a set of values
G*. The Pareto-optimal projects were obtained by means of minimization in P" with
constraints on A, * which gradually increased A, * from the value obtained for the optimal bar
under compression up to the value obtained for the optimal bar under bending.

In Figure 5, a the Pareto-optimal solutions are presented in the plane P*-AZ,* for G*=0.4.
In order to obtain the Pareto-optima for different values of G* in a compact form, they were

recalculated in parameters P / G*1'668, M*/ G*1'995, with account of the power
approximations which are presented in Table 2. Results are presented in Figure S, 5. The
curves for various G* almost coincide in these variables, and therefore these curves may be
used approximately for any G* values.

In Figure 6 the dashed lines present optimal projects obtained in the single-criterion
optimization, and the solid lines show Pareto-optimal solutions for several G* values (each
point on this lines presents limit values of P and M,* for a certain optimal project obtained for
a given G*).
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Figure 5: Pareto-optimal projects for two criteria - P*, M,
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Figure 6: The single-criterion optimal projects (dashed lines ), compromised projects (solid
line) and the Pareto-optimal solutions for several G* values.

«Compromisey projects

With the aim of finding a «compromise» project the problem of optimization was solved
with the global criterion in the form:

F = PPt MY/M*, 1 (5)

where P*, . and M*,,,. are the values of P* and M*,, obtained in single-criterion optimizations
in P* and M*, . The projects obtained are presented in Figure 3 (dashed lines) and indicated by
the cross in Figure 5. In Figure 7 cross-sections of the optimal bars for max P* max M*, and
the «compromised» optimum are compared for given G*=0.4 and length L=1 m . We see that
the compromised optima are close to the single-criterion optima obtained for max M*,. They
can carry out almost the same limit moment, but the limit force is less about 10% in
comparison with the project obtained under condition of max P* (for the same G*).

It is worthwhile to compare the optimal values of nondimensional parameters with those
for standard profiles . In Table 3 there are presented dimensions of channel cross-sections
according to Russian standards GOST 8278-83 and corresponding values of nondimensional
parameters b,/ by, t/ b,.
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Figure 7: Optimal profiles obtained in single-criterion optimization (a, b), and
«compromised»
optimum ( ¢ ) , for G*=0.4 and length =1 m.
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TABLE 3
DIMENSIONS OF BENT STEEL CHANNEL PROFILES ACCORDING TO GOST 8278-83
b,, mm b,, mm f, mm b,/ b, t/b,

60 32 3 0.53 0.05

80 50 4 0.625 0.05

100 50 3 0.5 0.03

120 60 4 0.5 0.033
120 60 5 0.5 0.042
140 60 4 0.43 0.029
160 80 4 0.5 0.025
160 80 5 0.5 0.031
180 80 5 0.44 0.028
200 80 4 0.4 0.02

200 80 5 0.4 0.025
250 125 6 05 0.024
300 100 8 0.33 0.027

In Figure 8 domains of optimal nondimensional parameters in plane #/ b,, b,/ b, for single-
criterion and two-criteria optima are shown. The dark points present values of these parameters
for the standard profiles.
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Figure 8: Domains of optimal nondimensional parameters and the standard profiles.

We see that the majority of the profiles fall in (or close to) the optimal zone for
compromised projects, but some profiles are rather far from this zone. So we can indicate those
profiles which are not optimal at any load considered (any combination of axial force and
bending moment in the symmetry plane).
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