УДК 656.212

В. А. АНДРЮЩЕНКО (ДИИТ), В. Вл. СКАЛОЗУБ (Днепропетровский государственный аграрный университет)

МЕТОД СТРУКТУРНОГО ПРЕОБРАЗОВАНИЯ СТОХАСТИЧЕСКИХ СЕТЕЙ ДЛЯ ГЕРТ-МОДЕЛИРОВАНИЯ ТЕХНОЛОГИЧЕСКИХ И ЭКОНОМИЧЕСКИХ ПРОЦЕССОВ

Розроблено метод структурного перетворення графів стохастичних мереж, який розширює сферу застосування ГЕРТ-моделей для аналізу випадкових економічних і технологічних процесів.

Разработан метод структурного преобразования графов стохастических сетей, расширяющий сферу применения ГЕРТ-моделей для анализа случайных экономических и технологических процессов.

The method of structural transformation of graphs of stochastic networks is developed, which extends an application sphere of GERT-models for the analysis of casual economic and technological processes.

Введение

Сетевые модели и методы широко используют при решении многих категорий как технологических, так и экономических задач, например, календарного планирования, замены оборудования, проектировании транспортных сетей, управления перевозками и др. Для анализа случайных процессов, представленных стохастическими сетевыми моделями, применяют графический метод оценки и пересмотра планов, ГЕРТ-метод [1]. Он позволяет определить вероятностные оценки времен выполнения сетевых графиков заданной структуры. Суть метода состоит в выполнении эквивалентных преобразований сетевых графов, которые образуют последовательно-параллельную структуру, содержащую также и петли. В результате преобразований структуры сети для последовательных, параллельных участков и петель исходный граф сводят к одной дуге, нагруженной эквивалентным для всей сети весом - искомой при анализе величиной.

Вместе с тем, не все сетевые структуры могут быть непосредственно представлены как композиция указанных базовых элементов. К ним относится, в частности, структура типа мостиковой схемы. В связи с этим возникает задача эквивалентного автоматического преобразования структуры произвольного потокового графа, отображающего некоторый технологический или экономический процесс, к предусмотренному в ГЕРТ-моделях виду.

Применительно к железнодорожным перевозкам структура графа движения вагонопотоков часто не удовлетворяет требованиям ГЕРТметоду — граф их движения не обязательно имеет последовательно-параллельную структу-

ру. В работе предложен метод структурного преобразования стохастических сетей в последовательно-параллельную форму, обеспечивающую возможности применения аппарата ГЕРТ-моделей.

Метод структурного преобразования стохастических графов для ГЕРТ-моделей

Метод основан на построении всех возможных путей в сетевом графе с одним источником (начальная вершина) и стоком (конечная вершина), по которым проходят выделенные части общего потока. При этом, естественно, производится дублирование узлов графа. Параметры дуг при преобразовании пересчитываются в соответствии с величиной потока для данного пути. Параллельно-последовательная форма сети получается рекурсивно путем объединения участков сформированных путей, которые имеют одинаковые префиксы и суффиксы.

Обозначим через d_{ij} дугу графа, направленную из i-го узла в j-й. Каждая дуга характеризуется весом (например, временем выполнения t_{ij} и величиной потока v_{ij}). Поток дуги определим как часть общего потока в сети, который примем за 1. Тогда для дуги d_{ij} графа выполняется условие $0 < v_{ij} \le 1$. Для каждого узла графа, кроме начального и конечного, выполняется условие сохранения потока $\sum_i v_{ij} = \sum_k v_{jk}$.

Для начального узла выходной поток равен 1, а для конечного — входной поток также равен 1. Пусть j_s — дубликаты узла j. Суммарный поток для узлов-дубликатов равен потоку для ис-

ходного узла $\sum_{s} v_{ij_s} = v_{ij}$. Правила определения потока для дуг преобразованного графа рассмотрим на фрагменте сети (рис. 1, 2):

$$\begin{aligned} v_{b_ic_i} &= v_{bc_i} \ ; \\ v_{ab_i} &= v_{ab} \cdot \frac{v_{bc_i}}{\sum_i v_{bc_i}} \ . \end{aligned}$$

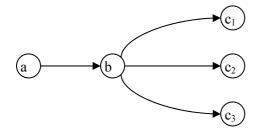


Рис. 1. Фрагмент сети до преобразования

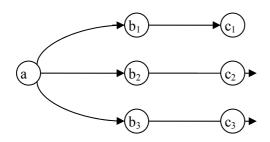


Рис. 2. Фрагмент преобразованной сети

На рис. 2 показано формирование всех возможных путей в сетевом графе рис. 1 и создание узлов-дубликатов, необходимых для преобразования сети в последовательно-параллельную форму.

Рассмотрим идею метода структурного моделирования на примере стохастической сети рис. 3 [3]. Граф связности узлов сети задается парами $G = \{(1, 2), (2, 5), (1, 3), (3, 2), (3, 4), (4, 2), (4, 5)\}$. Связь (4, 5) не позволяет использовать ГЕРТ-преобразования непосредственно. На рис. 4 представлено множество путей из вершины 1 к вершине 5, построенное для структурного преобразования сети. На рис. 5а, 56, 5с даны этапы преобразования.

Преобразование сети состоит в следующем:

- 1. Построить множество $P = \{p_i\}$ всех путей в графе от начальной вершины до конечной, $p_i = \{x_1^i = x_1, x_2^i, \dots, x_{n_i}^i = x_n\}$.
- 2. Выполнить конъюнкцию (объединение) вершин путей p_k , p_j (последовательности узлов), если выполняются условия:

- у путей p_k , p_j маршруты от корня к некоторому узлу A (префиксы) одинаковые,
- в каждом из путей p_k , p_j существует вершина B, после которой маршруты к стоку x_n (суффиксы) также одинаковые.

При конъюнкции узлов подпути p_k , p_j от начального узла x_0 к узлу A отождествляются так же, как и подпути $\{B,\ldots,x_n\}$, а между узлами A,B появляются параллельные маршруты, которые далее обрабатываются подобным образом.

В результате получаем структуру, к которой можно применить эквивалентные преобразования ГЕРТ-моделирования сети.

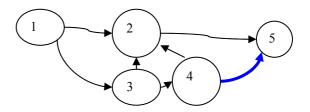


Рис. 3. Исходная структура сети

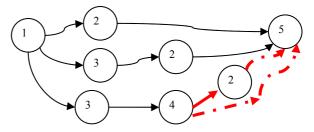


Рис. 4. Множество возможных путей в сети

Обобщая сказанное, получаем метод структурного преобразования стохастических сетей:

- объединить все начальные узлы графа, создать один узел-исток, а также и узел-сток;
- получить все возможные пути от истока к стоку как последовательности символов узлов;
- рекурсивно выполнить процедуру конъюнкции путей, у которых совпадают подцепочки-префиксы и суффиксы относительно некоторых узлов A и B; для узлов A и B как новых источников и стоков повторить процедуру конъюнкции;
- процедура структурирования сети заканчивается, если на очередном шаге операции конъюнкции не удается выделить новых узлов источников и стоков.

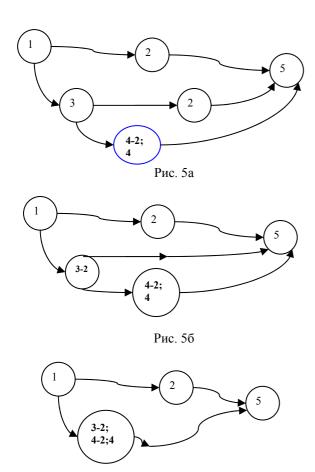


Рис. 5с. Преобразованная структура сети

Расчет нечетких характеристик сетевых потоковых графов

Преобразованная структура может быть использована не только для оценки параметров стохастических сетевых графов, но и для сетей, нагруженных нечеткими величинами. При этом метод оценки значений временных характери-

стик (например, вагонопотоков) состоит в получении нечеткого аналога топологического уравнения Мейсона [1, 2]. Уравнение используется для определения характеристик специально введенной дуги, которая является эквивалентной заменой всего нечеткого графа.

Охарактеризуем выполнение дуг графа $G(U,\tilde{W})$ аналогом производящей функции ГЕРТ-систем [1] в форме пары двух нечетких величин $\tilde{w}_{ij} = (\tilde{T}_{ij}; \ \tilde{\alpha}_{ij})$, где величина $\tilde{\alpha}_{ij}$ устанавливает, что операция дуги (i,j) будет иметь место, если имеет место узел $\langle i \rangle$, а \tilde{T}_{ij} — временная характеристика этой операции. Величина $\tilde{\alpha}_{ij}$ характеризует объемную составляющую дуги. Определим эквивалентные преобразования нечеткой сети $G(U,\tilde{W})$ при ее «стягивании» в один узел для следующих случаев:

- 1) замена последовательности дуг $(\tilde{w}_{ii}, \tilde{w}_{ik}) \Leftrightarrow \tilde{w}_{ik}$;
 - 2) параллельные дуги $\left(\tilde{w}_{ij}^{a}, \tilde{w}_{ij}^{b} \right) \Longleftrightarrow \tilde{w}_{ij}^{a+b}$;
- 3) композиция элементов сети петля дуга $\left(\tilde{w}_{ii}^a, \tilde{w}_{ij}\right) \Leftrightarrow \tilde{w}_{ij}^a;$
- 4) две вложенные петли в узле дуга $\left(\tilde{w}_{ii}^{a}, \tilde{w}_{ii}^{b}, \tilde{w}_{ij}\right) \Leftrightarrow \tilde{w}_{ij}^{a imes b}$.

Структура с вложенными петлями введена дополнительно к [1]. Ее производящая функция равна произведению рядов, порожденных петлями. В табл. 1 приведены алгоритмы расчета эквивалентных параметров преобразованных подсетей как нечетких «треугольных» величин.

Таблица 1 Расчет нечетких характеристик эквивалентных подсетей

№ п/п	ГЕРТ-операции преобразования сетей	Аналоги операций над нечеткими дугами	Расчет эквивалентных величин
1	$w_{ij} \times w_{jk} = w_{ik}$	$\widetilde{w}_{ij} \stackrel{\sim}{+} \widetilde{w}_{jk} = \widetilde{w}_{ik}$	$\left(ilde{T}_{ij} ilde{+} ilde{T}_{jk}; ilde{lpha}_{ij} ilde{ ilde{lpha}}_{jk} ight)$
2	$w_{ij}^a + w_{ij}^b = w_{ij}^{(a+b)}$	$\left(\widetilde{w}_{ij}^{a}\circ\widetilde{w}_{ij}^{b}\right)=\widetilde{w}_{ij}^{(a+b)}$	$\left(\left(ilde{T}^a_{ij}\circ ilde{T}^b_{ij} ight); ilde{lpha}^a_{ij} ilde{+} ilde{lpha}^b_{ij} ight)$
3	$w_{ij}/(1-w_{ii}^a)=w_{ij}^a$	$\tilde{w}_{ij} + (1 - \alpha_{\Delta ii}^a)^{-1} \cdot \tilde{\tilde{T}}_{ii}^a = \tilde{w}_{ij}^a$	$(\tilde{T}_{ij} + inv(1 + im(\tilde{\alpha}_{ii})) \times \tilde{T}_{ii}; \tilde{\alpha}_{ij})$
4	не определена	$\tilde{w}_{ij} \tilde{+} \prod_{s} \left((1 - \alpha^{s}_{\Delta ii})^{-1} \tilde{*} \tilde{T}^{s}_{ii} \right)$	$\begin{pmatrix} \tilde{T}_{ij} + inv(1 + im(\tilde{\alpha}_{ii}^a)) \times \tilde{T}_{ii}^a \times \\ inv(1 + im(\tilde{\alpha}_{ii}^b)) \times \tilde{T}_{ii}^b; & \tilde{\alpha}_{ij} \end{pmatrix}$

В таблице знаками $\{\tilde{+},\tilde{\times}\}$ обозначены операции нечеткого сложения и умножения, соответственно, а $\operatorname{im}(*)$, $\operatorname{inv}(*)$ являются операциями построения изображения и инверсии нечетких величин с треугольной функцией принадлежности. Знаком $\{\circ\}$ обозначена операция суперпозиции нечетких величин. Константа 1 как «треугольная» величина представляется тройкой (1, 1, 1). Измененные по сравнению с [1] формулы расчета эквивалентных величин (4-й столбец из табл. 1) позволяют вычислять как временные, так и объемные характеристики исследуемых процессов, в частности, вагонопотоков.

Таким образом, для построения ГЕРТэквивалентов нечетких сетей, характеризующих транспортные или же некоторые экономические процессы, необходимо выполнить их преобразование в последовательно-параллельную форму, а далее в нечеткое OR-AND представление, используя табл. 1. После этого производится расчет нечетких характеристик дуги, являющейся эквивалентной заменой сети в целом.

На рис. 6, 7 приведен пример преобразования нечеткой сети к структурированному виду, допускающему использование методов свертки табл. 1 и анализа системы в рамках нечеткого топологического уравнения. Процедура и этапы построения соответствуют рис. 3—5.

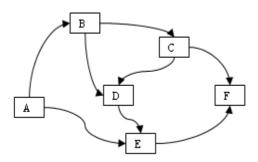


Рис. 6. Нечеткий граф до преобразования

Выводы

Широкое использование сетевых моделей и методов анализа технологических, экономических и других процессов при использовании стохастических и нечетких параметров опирается на математический аппарат ГЕРТ-преобразований. Вместе с тем, этот метод может быть использован лишь при определенной структуре сетевых моделей. В статье разработан метод автоматического структурного преобразования стохастических и нечетких сетей к виду, необходимому при ГЕРТ-моделировании, что дает возможность расширить сферу эффективного сетевого моделирования.

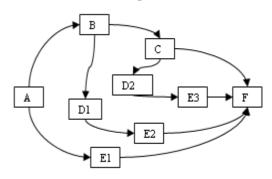


Рис. 7. Структурированный аналог нечеткого графа сети после преобразования к последовательно-параллельному виду

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- Филлипс, Д. Методы анализа сетей [Текст] / Д. Филлипс, А. Гарсиа-Диас. – М.: Мир, 1984. – 496 с
- 2. Прогнозирование показателей движения вагонов иностранных собственников на основе нечетких моделей исходных данных [Текст] / В. А. Андрющенко и др. // Вестник Днепропетр. нац. ун-та железнодор. трансп. им. акад. В. Лазаряна. 2003. Вып. 1. Д.: Изд-во ДНУЖТ, 2003. С. 84-90.
- 3. Скалозуб, В. Вл. Метод структурного перетворення потокових графів для ГЕРТ-моделювання економічних систем [Текст] / В. Вл. Скалозуб // В зб.: Тези доп. конф., Дніпропетр. аграрн. ун-т. Д., 2008. С. 125-126.

Поступила в редколлегию 08.07.2008.