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Abstract New existence conditions of a chaotic
behavior for wide class of (n + 1)-dimensional
autonomous quadratic dynamical systems are sug-
gested. It is shown that in all such systems the chaotic
dynamics is generated by 1D discrete map by some
combinationof the logisticmap f (x) = λx(1−x); λ >

0 and Ricker’s map g(x) = x exp(μ − x);μ > 0.

Keywords Ordinary autonomous quadratic
differential equations system · Limit cycle ·
Saddle focus · 1D discrete map · Chaos

1 Introduction

Chaos is a very interesting nonlinear phenomenon,
whichhas been intensively studied for last four decades.
Many potential applications have come true in secure
communication, laser and biological systems, and other
areas (see, for example, Refs. [1–3] and many refer-
ences cited therein).
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From the mathematical point of view, there are two
basic methods of search of chaotic systems. They are
based either on establishment of the existence fact of
a homoclinic orbit in a given dynamical system or on
construction for the given system of a discrete map and
proof of its chaotic.

There is a huge number of papers devoted to the
search of homoclinic orbits in 3D systems of differen-
tial equations (see, for example, [4–13]). It is necessary
also to mention the series of publications [14–19], in
which new chaotic systems were created as a result of
generalization of the classic Lorenz system. (It gener-
alization as the final result to the search of homoclinic
orbits was reduced).

The construction of discrete maps for continuous
dynamical systems is still small studied. Here basic
results are contained, for example, in [20–28]. The
main idea of these papers is that properties of the
being created discrete maps, which describe a behav-
ior of continuous dynamical systems, are based on
the well-known properties of the Ricker map f (x) =
x exp(r−x) or the logistic map g(x) = r x(1−x). Our
approach to research of chaos in (n + 1)-dimensional
autonomous quadratic systems is also based on this
idea.

The most general approach at the study of chaos
in the continuous (n + 1)-dimensional system consists
in finding of a basin of attraction for this system. The
simplest situation arises up then, when the basin of
attraction iswhole spaceRn+1. In otherwords, for exis-
tence of the basin it is sufficiently that all solutions of
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the system were bounded at any initial data. Exactly
this approach will be realized in the present work. In
the total a significant part of results about existence of
chaotic dynamics obtained in [24,25] for 3D quadratic
systems it will be carried on (n+ 1)-dimensional case,
where n > 1.

Finally, we notice that all systems considered further
are generalizations of the following 3D system ([20]):

⎧
⎨

⎩

ẋ(t) = a11x(t) + a12y(t) + a13z(t) + h11y2(t) + h12y(t)z(t) + h22z2(t),
ẏ(t) = a21x(t) + a22y(t) + a23z(t) + x(t)(b1y(t) + b2z(t)),
ż(t) = a31x(t) + a32y(t) + a33z(t) + x(t)(c1y(t) + c2z(t)).

(1)

2 Bounded solutions of quadratic dynamical
systems

Consider the following (n+1)-dimensional autonomous
quadratic system of differential equations

ẋ(t) = Ax + x0Bx + f(x), x

= (x0, x1, . . . , xn)
T ∈ R

n+1, n ≥ 1. (2)

Here

A =

⎛

⎜
⎜
⎜
⎝

a00 a01 · · · a0n
a10 a11 · · · a1n
...

...
. . .

...

an0 an1 · · · ann

⎞

⎟
⎟
⎟
⎠

∈ R
(n+1)×(n+1),

B =

⎛

⎜
⎜
⎜
⎝

0 b01 · · · b0n
0 b11 · · · b1n
...

...
. . .

...

0 bn1 · · · bnn

⎞

⎟
⎟
⎟
⎠

∈ R
(n+1)×(n+1),

f(x) = ( f0(x1, . . . , xn), f1(x1, . . . , xn), . . . ,

fn(x1, . . . , xn))
T ∈ R

n+1,

and

f0(x1, . . . , xn) =
n∑

i, j=1

c(0)
i j xi x j , f1(x1, . . . , xn)

=
n∑

i, j=1

c(1)
i j xi x j , . . . , fn(x1, . . . , xn)

=
n∑

i, j=1

c(n)
i j xi x j

are real quadratic forms.
Suppose that the matrix B has rank n. Then, as is

shown in [24,25], by suitable real linear nonsingular

transformation S = (si j ) ∈ R
(n+1)×(n+1) of variables

x0, x1, . . . , xn of the type
⎛

⎜
⎜
⎜
⎝

x0
x1
...

xn

⎞

⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎝

s00 s01 · · · s0n
0 s11 · · · s1n
...

...
. . .

...

0 sn1 · · · snn

⎞

⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎝

x0
x1
...

xn

⎞

⎟
⎟
⎟
⎠

,

system (2) can be reduced to the same kind (2), but
with other coefficients; i, j = 0, 1, . . . , n. In addition,
in this new presentation thematrix B will have the form

B =

⎛

⎜
⎜
⎜
⎝

0 0 · · · 0
0 b11 · · · b1n
...

...
. . .

...

0 bn1 · · · bnn

⎞

⎟
⎟
⎟
⎠

∈ R
(n+1)×(n+1). (3)

(With the purpose of simplification of further expo-
sition, we left in the new system the designations
accepted in system (2). Besides, under the conditions
n = 2, f1(x) = f2(x) ≡ 0, and condition (3) system
(2) coincides with system (1).)

Introduce in system (2) new real variables ρ >

0, φ1, . . . , φn under the formulas: x0 = x, x1 =
ρ cosφ1, . . . , xn = ρ cosφn , where cos2 φ1 + · · · +
cos2 φn ≡ 1. Then, after replacement of variables and
multiplication of the second, third,…, and the last equa-
tions of system (2) on the corresponding coordinates
of row vector (cosφ1, . . . , cosφn) and summation, we
get the first and second equations of system (2) in such
aspect
⎧
⎨

⎩

ẋ(t)=gx+g1(φ1, . . . , φn)ρ+g22(φ1, . . . , φn)ρ
2,

ρ̇(t) = h(φ1, . . . , φn)x + h1(φ1, . . . , φn)ρ

+ h12(φ1, . . . , φn)xρ + h22(φ1, . . . , φn)ρ
2,

(4)

where φi = φi (t), i = 1, . . . , n, and

g = a00,

g1(φ1, . . . , φn) =
n∑

j=1

a0i cosφi ,

g22(φ1, . . . , φn) =
n∑

i, j=1

c(0)i j cosφi cosφ j ,
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h(φ1, . . . , φn) =
n∑

i=1

ai0 cosφi ,

h1(φ1, . . . , φn) =
n∑

i=1

(cosφi ) ·
( n∑

j=1

ai j cosφ j

)
,

h12(φ1, . . . , φn) =
n∑

i=1

(cosφi ) ·
( n∑

j=1

bi j cosφ j

)
,

h22(φ1, . . . , φn) =
n∑

i=1

(cosφi ) · fi (cosφ1, . . . , cosφn).

Let u1 = cosφ1, . . . , un = cosφn , where u21 +
· · · + u2n = 1 (thus, we have x1 = ρu1, . . . ,
xn = ρun). Introduce the quadratic forms of degree 2:
g22(u1, . . . , un), h12(u1, . . . , un), and �(u1, . . . , un)
≡ g ·h1(u1, . . . , un)−g1(u1, . . . , un) ·h(u1, . . . , un).
Besides, we also introduce the polynomial

D(u1, . . . , un) ≡ h222(u1, . . . , un)

+ 4g22(u1, . . . , un) · h12(u1, . . . , un)
of degree 6.

From the mathematical analysis, it is well known
that any real continuous function w(u1, . . . , un) reach
on the sphere S := u21 + · · · + u2n = 1 of it the greatest
and the least values.

Let g1G ≥ 0, g22G , h1G , h12G , and h22G ≥ 0
be the greatest values on the sphere S of the func-
tions g1(u1, . . . , un), g22(u1, . . . , un), h1(u1, . . . , un),
h12(u1, . . . , un), and h22(u1, . . . , un), respectively.

Consider the system
⎧
⎨

⎩

ẋa(t) = gxa + g1Gρa + g22Gρ2
a ,

ρ̇a(t) = h(u1, . . . , un)xa + h1Gρa + h12Gxaρa
+ h22Gρ2

a ,

(5)

where h(u1, . . . , un) is a real bounded function.
It is clear that for systems (4) and (5),we have x(t) ≤

xa(t) and ρ(t) ≤ ρa(t). Thus, according to comparison
principle, from boundedness of solutions of system (5)
it follows that solutions x(t) and ρ(t) of system (4) are
also bounded.

Use the following theorem, which is generalization
of the known Theorem 1 [29].

Theorem 1 The quadratic system (5) has all of its tra-
jectories bounded for t ≥ 0 if and only if the conditions
g < 0, g22G > 0, h12G < 0, and h222G+4g22G ·h12G <

0 are valid.

It is clear that if the quadratic form g22(u1, . . . , un)
is positive definite and the quadratic form h12(u1, . . . ,
un) is negative definite (or vice versa), then Theo-
rem 1 can be applied to system (4). (In this case, for
all real numbers u1, . . . , un such that the condition
u21+· · ·+u2n = 1 is satisfied, we have g22(u1, . . . , un)·
h12(u1, . . . , un) �= 0 and the greatest value of the func-
tion h12(u1, . . . , un) is negative.)

Theorem 2 Assume that for system (2) the matrix B
has form (3). If a00 < 0 and the magnitude

max
(u1,...,un)∈S

D(u1, . . . , un) < 0, (6)

then all trajectories of system (2) are bounded for t ≥ 0.

Proof It is clear that if ∀(u1, . . . , un) ∈ S, then
we have D(u1, . . . , un) < 0. Therefore, from here
it follows that ∀(u1, . . . , un) ∈ S g22(u1, . . . , un) ·
h12(u1, . . . , un) < 0. 	


Now suppose that in system (5) we have g22G < 0
and h12G > 0. Then the replacement of variable xa →
−xa lead to new system (5) in which we will have
g22G > 0 and h12G < 0. Since at this replacement of
variable xa the inequalities g < 0 and x21 (t) + · · · +
x2n (t) = ρ2(t)(cos2 φ1(t) + · · · + cos2 φn(t)) ≤ ρ2

a (t)
are saved, then the application of Theorem 1 completes
the proof of Theorem 2. 	


In further reasonings the following theorem plays a
key role.

Theorem 3 Assume that for system (2) we have a00 <

0, a10 = · · · = an0 = 0, and the quadratic form
h1(u1, . . . , un) is positive definite. Then under the con-
ditions of Theorem 2 in this system there exists a unique
stable limit cycle.

Proof It is clear that in system (5) we can write
h(u1, . . . , un) ≡ 0, h1G > 0, h12G < 0, h22G ≥ 0,
g1G ≥ 0, and g22G > 0. Then instead of system (5),
we get the following system
{
ẋb(t) = gxb + g1Gρb + g22Gρ2

b ,

ρ̇b(t) = h1Gρb + h12Gxbρb + h22Gρ2
b ,

(7)

where we again have xa(t) ≤ xb(t) and ρa(t) ≤ ρb(t).

Now introduce in system (7) new real variables ρc =
−ρb > 0 and xc = xb. Then system (7) transforms in
{
ẋc(t) = gxc − g1Gρc + g22Gρ2

c ,

ρ̇c(t) = h1Gρc + h12Gxcρc − h22Gρ2
c .

(8)
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Thus, if instead of (8) we will consider the following
system
{
ẋd(t) = gxd + g22Gρ2

d ,

ρ̇d(t) = h1Gρd + h12Gxdρd .
(9)

Then from here it follows that xc(t) ≤ xd(t) and
ρc(t) ≤ ρd(t).

Finally, if in system (9) we put ρd = −ρe and
xd = xe, then we get the same system (9), but with
the condition ρe > 0.

Thus, at the initial values xd0 > 0 and ρd0 > 0 sys-
tem (9) coincides with system (17) [23]. In the same
paper [23] (Theorem 5 and its Corollary), it was shown
that the system (17) [23] had a unique stable limit cycle.
Consequently, according to Comparison Principle, sys-
tem (7) (and systems (5) and (2)) also must have a
unique stable limit cycle. 	


It is difficult to check up condition (6). Therefore, in
applications the following obvious corollary of Theo-
rem 2 can be useful.

Theorem 4 Assume that for system (2) the matrix
B has form (3) and a00 < 0. Suppose also that
f1(x1, . . . , xn) = .. = fn(x1, . . . , xn) ≡ 0. If the
quadratic form I1(x1, . . . , xn) = ρ2g22(u1, . . . , un) is
positive definite and the quadratic form I2(x1, . . . , xn)
= ρ2h12(u1, . . . , un) is negative definite (or vice
versa), then all trajectories of system (2) are bounded
for t ≥ 0

3 Appearance of chaotic solutions in system (2)

A basic result, which will be proved in this section,
contains in the following theorem.

Theorem 5 Suppose that for system (4) the following
conditions:

(i) g < 0;
(ii) the quadratic form�(u1, . . . , un) is negative def-

inite;

(iii) for any nonzero vector (u1, . . . , un) ∈ R
n the

function D(u1, . . . , un) < 0;

(iv) lim inf
t→∞ ρ(t) = lim inf

t→∞

√

x21 (t) + · · · + x2n (t) = 0

(from this condition it follows that ∀ε > 0 there exists
a numerical sequence tm → ∞ as m → ∞ such that
ρ(tm) < ε) are fulfilled.

Then in system (2) there is a chaotic dynamics.

Corollary Under the conditions of Theorem 5 the
chaotic behavior of solutions of system (2) is gener-
ated by

either 1D iterated process

vk+1 = vk exp(λ + νvk − μv2k ), vk > 0;
k = 0, 1, 2, . . . ; λ > 0, μ > 0, ν ∈ R, (10)

if the condition h22(u1, . . . , un) �≡ 0 is valid
or 1D iterated process

vk+1 = vk(1 − vk) exp(λ1 + ν1vk − μ1v
2
k ), vk ∈ [0, 1];

k = 0, 1, 2, . . . ; λ1 > 0, μ1 > 0, ν1 ∈ R, (11)

if the condition h22(u1, . . . , un) ≡ 0 is valid.

Proof It is obvious that from conditions (i)–(iii) fol-
lows the boundedness of all solutions of system (2).
Nevertheless, precisely the conditions of Theorem 2
will allow to construct process (10), which generates
chaos in system (2). 	


(d1) Indeed, from condition (iii) it follows that
lim
t→∞ ρ(t) < ∞. (Otherwise would be lim

m→∞ tm < ∞.)

Suppose opposite: there exists a point t∗s (it can be
t∗s = ∞) such that lim

t→t∗s
x(t) = lim

t→t∗s
ρ(t) = ∞, ρ(t) >

0, and x(t) > 0 . Then using L’Hospital’s rule for
system (4), we get

lim
t→t∗s

x(t)

ρ(t)
= ∞

∞ = lim
t→t∗s

ẋ(t)

ρ̇(t)

= lim
t→t∗s

gx + g1(φ1, . . . , φn)ρ + g22(φ1, . . . , φn)ρ
2

h(φ1, . . . , φn)x + h1(φ1, . . . , φn)ρ + h12(φ1, . . . , φn)xρ + h22(φ1, . . . , φn)ρ2

= lim
t→t∗s

g22(φ1, . . . , φn)

h12(φ1, . . . , φn)(x/ρ) + h22(φ1, . . . , φn)
.

From here it follows that

h12 lim
t→t∗s

x2(t)

ρ2(t)
+ h22 lim

t→t∗s

x(t)

ρ(t)
− g22 = 0. (12)

123

Author's personal copy



Role of logistic and Ricker’s Maps 723

A discriminant of the last quadratic equation can be
calculated on the formula

D(u1, . . . , un) = h222(u1, . . . , un)

+ 4h12(u1, . . . , un)g22(u1, . . . , un).

Since D(u1, . . . , un) < 0, then equation (12) does not
have the solutions. A contradiction with the supposi-
tions ρ(t) → ∞ and x(t) → ∞was got. Thus, ∀t > 0
we have ρ(t) < ∞ and x(t) < ∞.

(d2) Now taking into account Theorem 3 we can
consider that for some values of parameters, system (2)
has a periodic solution. (It means that system (4) has
also the periodic solution.) Suppose also that φi (tk) =
φi (t0)+T ·k, where t0 ≥ 0, T ≤ N ·π , and N is positive
integer; k = 0, 1, 2, . . .; i = 1, . . . , n. Introduce the
designations:

g = a00 = ξ11 < 0

g1(cosφ1(tk), . . . , cosφn(tk)) = ξ12 = const,

g22(cosφ1(tk), . . . , cosφn(tk)) = ζ22 = const,

h(cosφ1(tk), . . . , cosφn(tk)) = ξ21 = const,

h1(cosφ1(tk), . . . , cosφn(tk)) = ξ22 = const,

h12(cosφ1(tk), . . . , cosφn(tk)) = η12 = const,

h22(cosφ1(tk), . . . , cosφn(tk)) = η22 = const.

Consider the infinite sequence of systems of differ-
ential equations
{
ẋk(t) = ξ11xk + ξ12ρk + ζ22ρ

2
k ,

ρ̇k(t) = ξ21xk + ξ22ρk + η12xkρk + η22ρ
2
k

(13)

instead of system (4). (Here each of systems (13) is
considering in a small neighborhoodOk of the point tk :
t ∈ Ok, k = 0, 1, 2, . . .. As initial conditions xk0, ρk0
for each of systems (13) the solutions of system (4) in
the point tk are appointed.)

Suppose that the time t0 also satisfies to the condition

ẋ(t0) = ξ11x0 + ξ12ρ0 + ζ22ρ
2
0 = 0.

By virtue of periodicity of solutions of system (4),
we can construct the sequence t0, t1,…, tk ,…such

that for the first equation of system (13) the condi-
tion ξ11xk + ξ12ρk + ζ22ρ

2
k = 0 will be fulfilled ∀tk ,

k = 0, 1, 2, . . .. From here it follows that

xk = −ξ12ρk + ζ22ρ
2
k

ξ11
; k = 0, 1, 2, . . . . (14)

Assume that h(cosφ1, . . . , cosφn) ≡ 0 and
h22(cosφ1, . . . , cosφn) �≡ 0. (According toTheorem3
system (4) can have a periodic solution.) Then from the
second equation of system (4), it follows that

ρ̇(t) = h22(cosφ1, . . . , cosφn)ρ
2(t)

+[h12(cosφ1, . . . , cosφn)x(t)

+ h1(cosφ1, . . . , cosφn)]ρ(t). (15)

The solution of equation (15) may be derived under
the formula

ρ(t)= ρ0 exp(q(t))

1−ρ0
∫ t
t0
h22(cosφ1(τ ), . . . , cosφn(τ )) exp(q(τ ))dτ

,

(16)

where

q(t) =
∫ t

t0
[h12(cosφ1(τ ), . . . , cosφn(τ ))x(τ )

+ h1(cosφ1(τ ), . . . , cosφn(τ ))]dτ

and ∀t > t0
t∫

t0
exp(q(τ ))dτ > 0.

From formulas (15) and (16) we have

ρk+1 = ρk exp(q(tk+1)

−q(tk))
1−ρ0

∫ tk
t0

h22(cosφ1(τ ), . . . , cosφn(τ )) exp(q(τ ))dτ

1−ρ0
∫ tk+1
t0

h22(cosφ1(τ ), . . . , cosφn(τ )) exp(q(τ ))dτ
,

where

q(tk+1)−q(tk) =
tk+1∫

tk

[h12(cosφ1(τ ), . . . , cosφn(τ ))x(τ )

+ h1(cosφ1(τ ), . . . , cosφn(τ ))]dτ.

We transform this formula taking account of formula
(14). Then we derive
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724 V. Ye. Belozyorov, S. A. Volkova

q(tk+1) − q(tk) =

−ρ2
k

g

tk+1∫

tk

g22(cosφ1(τ ), . . . , cosφn(τ ))h12(cosφ1(τ ), . . . , cosφn(τ ))dτ −

−ρk

g

∫ tk+1

tk
h12(cosφ1(τ ), . . . , cosφn(τ ))g1(cosφ1(τ ), . . . , cosφn(τ ))dτ +

∫ tk+1

tk
h1(cosφ1(τ ), . . . , cosφn(τ ))dτ = −Eρ2

k + Fρk + G,

where

E = (1/g)

tk+1∫

tk

h12(cosφ1(τ ), . . . , cosφn(τ ))g22(cosφ1(τ ), . . . , cosφn(τ ))dτ > 0,

F = −(1/g)

tk+1∫

tk

h12(cosφ1(τ ), . . . , cosφn(τ ))g1(cosφ1(τ ), . . . , cosφn(τ ))dτ,

and by virtue of the conditions (i) – (iii)

G = (1/g)

tk+1∫

tk

gh1(cosφ1(τ ), . . . , cosφn(τ ))dτ

≡ (1/g)

tk+1∫

tk

�(cosφ1(τ ), . . . , cosφn(τ ))dτ > 0.

In addition, we construct the function


 = lim
k→∞

1 − ρ0

tk∫

t0
h22(cosφ1(τ ), . . . , cosφn(τ )) exp(q(τ ))dτ

1 − ρ0

tk+1∫

t0
h22(cosφ1(τ ), . . . , cosφn(τ )) exp(q(τ ))dτ

= 1 + lim
k→∞

ρ0

tk+1∫

tk
h22(cosφ1(τ ), . . . , cosφn(τ )) exp(q(τ ))dτ

1 − ρ0

tk+1∫

t0
h22(cosφ1(τ ), . . . , cosφn(τ )) exp(q(τ ))dτ

= 1 + lim
k→∞

ρ0h22(cosφ1(t∗), . . . , cosφn(t∗))
tk+1∫

tk
exp(q(τ ))dτ

1 − ρ0

tk+1∫

t0
h22(cosφ1(τ ), . . . , cosφn(τ )) exp(q(τ ))dτ

,

where t∗ ∈ (tk, tk+1), q(τ ) < pτ, p < 0. From here it

follows that lim
k→∞

tk+1∫

tk
exp(q(τ ))dτ = 0. Thus, we have


 = 1.
Finally, ∀ρk > 0 and k → ∞, we obtain

ρk+1 = ρk exp
(
−Eρ2

k + Fρk + G
)
; k = 0, 1, 2, . . . ,

(17)
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where E > 0, G > 0. Then from here the discrete
process (10) may be derived. The state of chaos of the
map (17) on the interval [0,∞) was proved in [22].

(d3) Now let h(cosφ1, . . . , cosφn) �≡ 0. We again
take advantage of formula (14). Let t ∈ (tk −δ, tk +δ),
where δ �= 0 is enough small. Then from the second
equation of system (4) it follows that

ρ̇(t) = ρ(t)

g

[
�(cosφ1(t), . . . , cosφn(t)) + (gh22(cosφ1(t), . . . , cosφn(t))

− h(cosφ1(t), . . . , cosφn(t))g22(cosφ1(t), . . . , cosφn(t))

− g1(cosφ1(t), . . . , cosφn(t))h12(cosφ1(t), . . . , cosφn(t)))ρ(t)

− h12(cosφ1(t), . . . , cosφn(t))g22(cosφ1(t), . . . , cosφn(t))ρ
2(t)

]
.

The solution of this equation can be represented in
the integral form

ρ(t) = ρ(t0) exp

⎡

⎣
1

g

t∫

t0

⎡

⎣�(cosφ1(τ ), . . . , cosφn(τ ))

+ (gh22(cosφ1(τ ), . . . , cosφn(τ ))

− h(cosφ1(τ ), . . . , cosφn(τ ))g22(cosφ1(τ ), . . . , cosφn(τ ))

− g1(cosφ1(τ ), . . . , cosφn(τ ))h12(cosφ1(τ ), . . . , cosφn(τ )))ρ(τ )

− h12(cosφ1(τ ), . . . , cosφn(τ ))g22(cosφ1(τ ), . . . , cosφn(τ ))ρ2(τ )

⎤

⎦ dτ

⎤

⎦ .

Suppose that in last formula the variable t takes two
values: tk and tk+1, tk < tk+1. Then we can define the
numbers ρ(tk) = ρk > 0, ρ(tk+1) = ρk+1 > 0. In this
case we can rewrite the formula for ρ(t) as

ρk+1 = ρk exp

⎡

⎣
1

g

tk+1∫

tk

⎡

⎣�(cosφ1(τ ), . . . , cosφn(τ ))

+ (gh22(cosφ1(τ ), . . . , cosφn(τ ))

− h(cosφ1(τ ), . . . , cosφn(τ ))g22(cosφ1(τ ), . . . , cosφn(τ ))

− g1(cosφ1(τ ), . . . , cosφn(τ ))h12(cosφ1(τ ), . . . , cosφn(τ )))ρ(τ )

− h12(cosφ1(τ ), . . . , cosφn(τ ))g22(cosφ1(τ ), . . . , cosφn(τ ))ρ2(τ )

⎤

⎦ dτ

⎤

⎦ .

Taking into account the known first theorem about
mean value, we can derive the formula ρk+1 =
ρk exp

(
−Eρ2

k + Fρk +G
)
; k = 0, 1, 2, . . . , in which

E > 0 and G > 0 are the same that in (17);

123

Author's personal copy



726 V. Ye. Belozyorov, S. A. Volkova

F = (1/g)

tk+1∫

tk

[
−h12(cosφ1(τ ), . . . , cosφn(τ ))g1(cosφ1(τ ), . . . , cosφn(τ ))

− h(cosφ1(τ ), . . . , cosφn(τ ))g22(cosφ1(τ ), . . . , cosφn(τ ))

+ h22(cosφ1(τ ), . . . , cosφn(τ ))g(cosφ1(τ ), . . . , cosφn(τ ))
]
dτ.

The state of chaos of the map f (ρ) = ρ · exp(G +
Fρ − Eρ2) on the interval [0,∞) can be proved by the
methods offered in [22].

Indeed, consider the exponential map

vk+1 = �(vk, λ, ν, μ) ≡ vk exp(λ + νvk − μv2k ),

vk > 0; k = 0, 1, 2, . . . ; λ > 0, μ > 0, ν ∈ R.

Let v∗
k be the minimal fixed point of mapping

�(k)(v, λ, ν, μ). It is known that for some λ =
λ∗, ν = ν∗, μ = μ∗ the map � is chaotic and
lim
k→∞ v∗

k (λ
∗, ν∗, μ∗) = 0. Then from the condition

(iv) of Theorem 5 it follows that at the parameters
λ = λ∗, ν = ν∗, μ = μ∗ process (10) generates
the subsequence vm1 ,…, vmk , . . ., for which vmk =
lim

t→t∗mk

v(t∗mk
) < ε ≈ 0, k ≥ 1. It means that in sys-

tem (2) there is a chaotic dynamics.
Thus, the conclusions of all items (d1) – (d3) allow

to complete the proof of Theorem 5 and formula (10)
of its Corollary.

(d4) Now let h22(cosφ1, . . . , cosφn) ≡ 0. Then the
solution of the second equation of system (4) can be
represented in the integral form

ρ(t) = exp

⎡

⎣

t∫

0

(h1(cosφ1(ω), . . . , cosφn(ω))

+ h12(cosφ1(ω), . . . , cosφn(ω))x(ω))dω

⎤

⎦

×
⎡

⎣ρ0 +
t∫

0

(h(cosφ1(τ ), . . . , cosφn(τ ))x(τ )

× exp

⎡

⎣−
τ∫

0

(h1(cosφ1(τ ), . . . , cosφn(τ ))

+ h12(cosφ1(τ ), . . . , cosφn(τ ))x(τ ))dτ

⎤

⎦ dτ

⎤

⎦ , t > τ,

(18)

where ∀φ(τ) h12(cosφ1(τ ), . . . , cosφn(τ )) < 0.
Suppose that in formula (18) the variable t takes

two values: tk and tk+1, tk < tk+1. Then we can define

the numbers ρ(tk) = ρk > 0, ρ(tk+1) = ρk+1 > 0,
x(tk) = xk > 0, and x(tk+1) = xk > 0. Introduce the
designation

�(t) = exp

[ t∫

t0

(h1(cosφ1(ω), . . . , cosφn(ω))

+ h12(cosφ1(ω), . . . , cosφn(ω))x(ω))dω

]

.

Then from formula (18) it follows that

ρk+1 = ρ0�(tk+1) + �(tk+1)

×
tk+1∫

t0

�(−τ)x(τ )h(cosφ1(τ ), . . . , cosφn(τ ))dτ,

ρk = ρ0�(tk) + �(tk)

×
tk∫

t0

�(−τ)x(τ )h(cosφ1(τ ), . . . , cosφn(τ ))dτ,

and
ρk+1

ρk
= �(tk+1)�(−tk) + �(tk+1)

ρk

×
tk+1∫

tk

�(−τ)x(τ )h(cosφ1(τ ), . . . , cosφn(τ ))dτ.

(19)

The first equation of system (4) on interval [tk, tk+1]
may be also written in the integral form as

xk+1 = xk exp(g(tk+1 − tk)) +
tk+1∫

tk

exp(g(tk+1 − τ))

×[g1(cosφ1(τ ), . . . , cosφn(τ ))ρ(τ )

+ g22(cosφ1(τ ), . . . , cosφn(τ ))ρ2(τ )]dτ,

tk < τ < tk+1. (20)

Let x(ti ) = xi , ρ(ti ) = ρi , φ(ti ) = φi , where ti are
roots of the first equation ẋ(ti ) = 0; i = 0,1,2,…[20,24].

We can also assume that the following variant takes
place: tk , tk+1, tk+2,…are sequential maximum (or a
point of inflection), minimum (or a point of inflection),
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and maximum (or a point of inflection) of the function
ρ(t).

Thus, from conditions ẋ(ti ) = 0 it follows that

x(tk) = −1

g
[g1(cosφ1(tk), . . . , cosφn(tk))ρ(tk)

+ g22(cosφ1(tk), . . . , cosφn(tk))ρ
2(tk)]. (21)

Taking into account formula (21) and the known
First Theorem About Mean Value we can rewrite for-
mula (19) as

ρk+1 ≈ �(tk+1)�(−tk)ρk

+�(tk+1)�(−ξk)[g1(cosφ1(ξk), . . . , cosφn(ξk))ρ(ξk) + g22(cosφ1(ξk), . . . , cosφn(ξk))ρ
2(ξk)]

−g

×
tk+1∫

tk

h(cosφ1(τ ), . . . , cosφn(τ ))dτ, (22)

where tk < ξk < tk+1.
(d5) It is clear that in (22) we have �(tk+1)�(−ξk)

> 0. In this case we can introduce the designations

�(tk+1)�(−tk) = θ > 0,
g1(cosφ1(tk), . . . , cosφn(tk))ρ(tk)

−g
= σ,

g22(cosφ1(tk), . . . , cosφn(tk))ρ(tk)

−g
= ψ > 0,

tk+1∫

tk

h(cosφ1(τ ), . . . , cosφn(τ ))dτ = −ω < 0,

where the functions θ, σ, ψ , and ω do not depend on k.
(The last inequality is stipulated to those that in formula
(22) we obtain lim

t→t∗m
ρ(t∗m) → 0 at some t∗m , if and only

if the second summand of this formula is negative. It is
obvious that at the implementation of condition (iv) of
Theorem 5 this restriction will be satisfied.)

Further, process (22) may be represented in the form

ρk+1 = θ ·
(
(1 + σ)ρk − ψωρ2

k

)
, k = 0, 1, . . . (23)

Let 1 + σ > 0. Introduce the new variable vk =
(ψω/(1+σ)) ·ρk . Then process (23) will be generated
by known logistic map

vk+1 = �(vk, �) ≡ � · vk · (1 − vk), k = 0, 1, . . . ,

where � = θ · (1 + σ) > 0.

Let v∗
k be the minimal fixed point of 1D mapping

�(k)(v, �) = �(�(. . . , �(v, �), �), �)
︸ ︷︷ ︸

k

. It is known

that if � = �∗ ∈ (3.84 ÷ 4), then the logistic map
�(v, �) is chaotic and lim

k→∞ v∗
k (�

∗) = 0. Hence, from

here it follows that at some value �∗ of the parame-
ter � process (23) generates the subsequence ρm1 ,…,
ρmk , . . ., for which ρmk = lim

t→t∗mk

ρ(t∗mk
) < ε ≈ 0,

k ≥ 1. It means that in system (2) there is a chaotic
dynamics.

Taking into account formula (17), we have

�(tk+1)�(−tk) = θ = exp(Eρ2
k + Fρk + G).

Then from here and formula (23) the discrete process
(11) may be derived. (In our view formulas (10) and
(11) justifies the name of the article.)

Consider the function f (v) = λv(1− v) exp(−μv2

+ νv). Let ḟ (v) be a derivative with respect to the
variable v. We compute the maximum of this function
on interval [0, 1]. For the solution of this task we will
calculate roots of equation ḟ (v) = 0 on the interval
[0, 1]. We have

ḟ (v) = 2μv3 − (2μ + ν)v2 + (ν − 2)v + 1 = 0,

(24)

and the derivative ḟ (0) > 0, and the derivative ḟ (1) <

0. Thus, on interval [0, 1] there exists at least one pos-
itive root of equation (24). In obedience to the theo-
rem of Descartes, equation (24) has two positive roots.
From here and the condition ḟ (1) < 0 it follows that
on interval [0, 1] there exists only one positive root v∗.

Let

λ∗ = exp(μv∗2 − νv∗)
v∗(1 − v∗)

.

Then ∀λ ∈ [0, λ∗], we have f (v)([0, 1]) ⊂ [0, 1]. The
state of chaos of the map f (v) on the interval [0, 1] can
be proved by the methods offered in [22]. Thus, the
conclusions of all items (d1)–(d5) allow to complete
the proof of Theorem 5 and its Corollary. 	
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Note that if numbers v0, v1, . . . , vk, . . . are small
enough then formula (11) can be considered as the spe-
cial case of formula (10). (Indeed, if v > 0 and v ≈ 0,
then exp(−v) ≈ 1 − v.)

Besides, from the conditions Theorem 5 it also fol-
lows that solutions x(t) and ρ(t) must be oscillating.
It means that the linear part of system (2) have to have
eigenvalues of opposite signs. In addition, for some val-
ues of parameters in this system there can be limit cycle.
The presence of such limit cycle may be guaranteed by
Theorem 3 under the conditions that one of eigenvalues
of the matrix of the quadratic form h1(u1, . . . , un) is
small negative and themagnitude a210+. . .+a2n0 is also
small enough. (Thus, for 3D systems the equilibrium
point (0, 0, 0) is a saddle focus.)

4 Example

Consider the following 4D generation of the known 3D
system [23]:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = −2x(t) + 7y2(t) + 13z2(t) + 0.25w2(t),
ẏ(t) = μx(t) + 7y(t) + 10z(t) − 3x(t)y(t),
ż(t) = −10y(t) + 7z(t) − 3x(t)z(t),
ẇ(t) = 0.55x(t) + 2z(t) + 2w(t) − 3x(t)w(t),

(25)

where μ = 1.81.

For this system all conditions of Theorem 5 (and
Theorem 4) are valid. On Fig. 1 the chaotic behavior
of solutions of system (25) is shown.

Fig. 1 The projections
(a)–(c) of the chaotic
attractor of 4D system (25)
on the different 3D
subspaces in
R
4 = (x, y, z, w) and

dependence (d) of radius
r(t) = ρ(t) =√
y2(t) + z2(t) + w2(t) of

this system on time t

(a)P1(R4) = (x, y, z (b)) P2(R4) = (y, z, w)

(c) P3(R4) = (z, w, x (d))
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As well as in [23] changing the parameter μ ∈
(0 ÷ 1.81) it is possible to observe the period dou-
ble bifurcation (Feigenbaum’s bifurcation). As a result
of cascade of the period double bifurcations, a periodic
solution of system (25) passes to chaotic.

5 Conclusion

The basic result of the present paper, which formu-
lated in Theorem 5, supposes implementation of the
condition D(u1, . . . , un) < 0. However, in works
[24,25] the similar result, which supposes fulfill-
ment for 3D quadratic systems of the more weak
condition D(u1, u2) = D(cosφ, sin φ) ≤ 0, was
derived. (Moreover, in [24,25] it is shown that for
Lorenz-like and Chen-like systems [19] the condi-
tion D(cosφ, sin φ) ≤ 0 is hold.) Therefore, a ques-
tion about generalizations of Theorem 5 on the case
D(u1, . . . , un) ≤ 0 remains opened.
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