Please use this identifier to cite or link to this item: http://eadnurt.diit.edu.ua/jspui/handle/123456789/14741
Title: Procedure for Determining the Thermoelastic State of a Reinforced Concrete Bridge Beam Strengthened with Methyl Methacrylate
Authors: Kovalchuk, Vitalii V.
Sobolevska, Yuliia H.
Onyshchenko, Arthur
Fedorenko, Olexander
Tokin, Oleksndr
Pavliv, Andrii
Kravets, Ivan B.
Lesiv, Julia
Keywords: bridge reinforcement
reinforced concrete beam
methyl methacrylate reinforcement
temperature field
КРС (ЛФ)
КФД (ЛФ)
Issue Date: 2021
Publisher: РС Тесhnology Сеntеr, Kharkiv, Ukraine
Citation: Kovalchuk V., Sobolevska, Yu., Onyshchenko, A., Fedorenko, O., Tokin, O., Pavliv, A., Kravets, I. Procedure for Determining the Thermoelastic State of a Reinforced Concrete Bridge Beam Strengthened with Methyl Methacrylate. Eastern-European Journal of Enterprise Technologies. 2021. Vol. 4, Iss. 7 (112). P. 26–33. DOI: 10.15587/1729-4061.2021.238440.
Abstract: ENG: This paper reports the analysis of methods for determining temperature stresses and deformations in bridge structures under the influence of climatic temperature changes in the environment. A one-dimensional model has been applied to determine the temperature field and thermoelastic state in order to practically estimate the temperature fields and stresses of strengthened beams taking into consideration temperature changes in the environment. The temperature field distribution has been determined in the vertical direction of a reinforced concrete beam depending on the thickness of the structural reinforcement with methyl methacrylate. It was established that there is a change in the temperature gradient in a contact between the reinforced concrete beam and reinforcement. The distribution of temperature stresses in the vertical direction of a strengthened reinforced concrete beam has been defined, taking into consideration the thickness of the reinforcement with methyl methacrylate and the value of its elasticity module. It was established that the thickness of the reinforcement does not have a significant impact on increasing stresses while increasing the elasticity module of the structural reinforcement leads to an increase in temperature stresses. The difference in the derived stress values for a beam with methyl methacrylate reinforcement with a thickness of 10 mm and 20 mm, at elasticity module E=15,000 MPa, is up to 3 % at positive and negative temperatures. It has been found that there is a change in the nature of the distribution of temperature stresses across the height of the beam at the contact surface of the reinforced concrete beam and methyl methacrylate reinforcement. The value of temperature stresses in the beam with methyl methacrylate reinforcement and exposed to the positive and negative ambient temperatures increases by three times. It was established that the value of temperature stresses is affected by a difference in the temperature of the reinforced concrete beam and reinforcement, as well as the physical and mechanical parameters of the investigated structural materials of the beam and the structural reinforcement with methyl methacrylate.
Description: V. Kovalchuk: ORCID 0000-0003-4350-1756; Yu. Sobolevska: ORCID 0000-0002-8087-2014; A. Onyshchenko: ORCID 0000-0002-1040-45304; O. Fedorenko: ORCID 0000-0002-3464-597X; I. Kravets: ORCID 0000-0002-2239-849X
URI: http://eadnurt.diit.edu.ua/jspui/handle/123456789/14741
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3921070
ISSN: 1729-3774(print)
1729-4061(on-line)
Other Identifiers: DOI: 10.15587/1729-4061.2021.238440
Appears in Collections:Статті КРС (ЛІ)
Статті КЗПФЗТ (ЛІ) (Раніше КФД (ЛФ))

Files in This Item:
File Description SizeFormat 
Kovalchuk .pdf894,35 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.