Electrodeposition of Nanocrystalline Chromium–Carbon Alloys from Electrolyte Based on Trivalent Chromium Sulfate Using Pulsed Current

Abstract
EN: The effect of pulse parameters on the electrolysis current output, nanocrystals size, composition, hardness, friction coefficient and wear resistance of nanocrystalline coatings Cr-C, obtained from the sulfuric acid-based electrolyte salts Cr (III), comprising urea and formic acid. It is shown that coatings containing ~ 9% (wt.) carbon; current density and duty cycle do not affect the composition blocked. It was found that depending on the current output from the duty cycle when there is a maximum duty cycle ~ 1.05 ... 1.1, where the output current significantly exceeds the value realized in current-mode steady-state. It is shown that if the micro-hardness Cr-C deposits obtained at DC, is close to 850-900 HV, then using a pulsed electrolysis in certain modes may increase the microhardness up to ~ 1200-1300 HV. Found that the use of pulsed electrolysis can significantly reduce the coefficient of friction chrome-carbon cover (with steel counterbody) in conditions of dry friction and under boundary lubrication, and also increases the durability of precipitation.
RU: Исследовано влияние параметров импульсного электролиза на выход по току, размер нанокристаллов, состав, твердость, коэффициент трения и износостойкость нанокристаллических покрытий Cr–C, получаемых из электролита на основе сернокислой соли Cr(III), содержащего карбамид и муравьиную кислоту. Показано, что покрытия содержат ~9% (мас.) углерода; плотность тока и скважность импульсов практически не влияют на их состав. Обнаружено, что на зависимости выхода по току от скважности импульсов возникает максимум при скважности импульсов ~1.05…1.1, при этом выход по току заметно превышает величину, реализуемую в стационарном токовом режиме. Показано, что если микротвердость Cr–C осадков, полученных на постоянном токе, близка к 850–900 HV, то при использовании импульсного электролиза в определенных режимах возможно возрастание микротвердости до ~1200–1300 HV. Установлено, что применение импульсного электролиза позволяет заметно снизить коэффициент трения хром-углеродного покрытия (стальное контртело) как в условиях сухого трения, так и при граничной смазке, а также приводит к повышению износостойкости осадков.
UK: Досліджено вплив параметрів імпульсного електролізу на вихід по струму, розмір нанокристалів, склад, твердість, коефіцієнт тертя і зносостійкість нанокристалічних покриттів Cr-C, одержуваних з електроліту на основі сірчанокислої солі Cr (III), що містить карбамід і мурашину кислоту. Показано, що покриття містять ~ 9% (мас.) вуглецю; щільність струму і шпаруватість імпульсів практично не впливають на їх склад. Виявлено, що на залежності виходу по струму від шпаруватості імпульсів виникає максимум при шпаруватості імпульсів ~ 1.05 ... 1.1, при цьому вихід за струмом помітно перевищує величину, реалізовану в стаціонарному струмовому режимі. Показано, що якщо мікротвердість Cr-C опадів, отриманих на постійному струмі, близька до 850-900 HV, то при використанні імпульсного електролізу в певних режимах можливе зростання мікротвердості до ~ 1200-1300 HV. Встановлено, що застосування імпульсного електролізу дозволяє помітно знизити коефіцієнт тертя хром-вуглецевого покриття (сталеве контртіло) як в умовах сухого тертя, так і при граничній мастилі, а також призводить до підвищення зносостійкості опадів.
Description
V. Artemchuk: ORCID 0000-0002-6056-5834
Keywords
еlectrodeposition, chromium-carbon alloys, trivalent chromium, pulse electrolysis, електроосадження, хром-вуглецеві сплави, тривалентний хром, імпульсний електроліз, электроосаждение, хром-углеродные сплавы, трехвалентный хром, импульсный электролиз, КЕРС
Citation
Electrodeposition of Nanocrystalline Chromium–Carbon Alloys from Electrolyte Based on Trivalent Chromium Sulfate Using Pulsed Current / F. I. Danilov, V. S. Protsenko, V. O. Gordiienko, A. S. Baskevich, V. V. Artemchuk // Protection of Metals and Physical Chemistry of Surfaces. – 2012. – Vol. 48, No. 3. – P. 328–333. – DOI: 10.1134/S2070205112030057.