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Track-side inertial measurements on common crossings are the object of the present study. The paper deals with the problem of mea-
surement's interpretation for the estimation of the crossing structural health. The problem is manifested by the weak relation of measured 
acceleration components and impact lateral distribution to the lifecycle of common crossing rolling surface. The popular signal processing and 
machine learning methods are explored to solve the problem. 

The Hilbert-Huang Transform (HHT) method is used to extract the time-frequency features of acceleration components. The method is 
based on Ensemble Empirical Mode Decomposition (EEMD) that is advantageous to the conventional spectral analysis methods with higher 
frequency resolution and managing nonstationary nonlinear signals. Linear regression and Gaussian Process Regression are used to fuse the 
extracted features in one structural health (SH) indicator and study its relation to the crossing lifetime. The results have shown the significant 
relation of the derived with GPR indicator to the lifetime.

Keywords: common crossing, structural health monitoring, track-side inertial measurements, rolling contact fatigue, Ensemble Empirical 
Mode Decomposition, Hilbert-Huang transform, Gaussian Process Regression

COMMON CROSSING STRUCTURAL HEALTH ANALYSIS WITH 
TRACK-SIDE MONITORING

in the railway networks [6-9]. German railways (DB AG) are 
developing and testing the system ESAH-M (Electronic Analysis 
System of Crossing - Portable), that is used for common crossing 
monitoring [9] (Figure 1, left). The system ESAH-M is based on 
measurement of the spatial accelerations in the frog nose, impact 
position and train velocities.   

The measurement information that is collected over the 
lifetime of crossings is used to predict the failures of crossing 
elements: rails, fastenings sleepers and ballast. The most crucial 
element of common crossing, that usually first limits its lifecycle, 
is the rolling surface (Figure 1, right). The rolling contact fatigue 
(RCF) of crossings is a failure that occurs more suddenly that 
other failures and therefore is often a reason of unplanned 
maintenance works.

The fault detection and prediction that is based on monitoring 
of infrastructure objects is the subject of many recent studies. 
The generalisation of modern data mining approaches with 
application to the railway track infrastructure is presented in 
book [10]. A machine learning approach with image processing 
methods is proposed in [11] for early detection and prediction 
of the RCF failures in rails of common crossing. An overview of 
modern diagnostic methods for the common crossings and based 
on measurements study of the crossing improvement is presented 
in [12-13]. Monitoring and prediction of the track substructure 
quality development of ballasted and ballastless track in transition 
areas is studied in [14-15]. Theoretical and experimental studies 
of dynamic loading on the crossing frogs, with relation to the 
crossing geometry are considered in [16]. A comparative study of 
statistical and mechanical approaches for recovering the relation 
in inertial measurements to the crossing lifetime is shown in [17]. 

1. 	 Introduction

The expectation of growth of the passenger and freight 
transportation in Europe demands the high efficiency, reliability 
and availability of operation of the European railway systems 
[1]. The railway infrastructure is characterized by the high costs 
of scheduled maintenance and, at the same time the significant 
impact of failures on the overall functioning of the railway system 
operation. The high maintenance costs are due to high share of 
maintenance to permanent way and switch and crossings (S&C) 
that according to [2], can reach up to 50 % of overall maintenance 
costs. The renewal and maintenance of S&C is one of the main 
cost divers and is estimated in [3] as almost 33 % of the total 
maintenance costs of railways. The high S&C costs are the result 
of frequent and cost-expensive, mainly low atomized manual 
inspections works.

On the other side, the S&C are a significant factor of the 
railway system availability and safety. According to study [4], 
the 6 % of unplanned turnout maintenance works cause up to 
55 % of train delays. Therefore, railway turnouts have an indirect 
influence on operational costs due to delays and follow-up delays, 
rail replacement service, cancellation of train services, alternative 
routing. The impact on the safety is assessed to 31 % of the track 
related derailments caused by the S&C faults on the networks of 
Great Britain [5].

Therefore, the enhancement of the S&C inspection system, 
by applying the concept of prognostics and health management 
(PHM), is the key element to the improvement of reliability and 
availability. The projects and investments that are based on the 
S&C monitoring have significantly increased in the past years 
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optimized flange rail is proposed using mathematical modeling 
methods for the flange rail assemblies of various designs.

The goal of this paper is an exploration of the modern 
signal processing machine learning methods according to their 
application for inertial measurement interpretation and recovering 
the relation to the crossing lifetime. The study is divided in two 
subsequent steps: degradation feature extraction and feature 
fusion with regression techniques. Two alternative approaches of 
crossing lifecycle prediction are studied.  

2.	 The HHT based features extraction of crossing 
degradation

The measurements of accelerations were carried out on 
the switch EW 60-500-1:12 with stiff common crossing. The 
switch was constructed on a main line with mixed traffic and 
train velocities range 90-160 km/h. The common crossing of the 
switch is of the assembly type from steel R350HT. The switch 
was monitored over its overall lifecycle 29 Mt. The monitoring 
wad performed with portable measurement system at 11 time 

Scale modelling of an on-board inertial measurement system for 
detection of the track geometry failures is performed in [18]. 
The problem of early fault detection on common crossings with 
on-board inertial measurements with application of the machine 
learning methods is considered in study [19]. The application 
of the machine learning methods for evaluation of the railway 
ballast compaction is shown in [20]. Use of reinforcement 
learning for adjustment of the disturbance parameters in the 
railway operational simulation is offered in [21]. The model-based 
prediction of the crossing geometry deterioration is presented in 
[22]. An analysis of the critical failures on the railway turnouts 
and failure prediction using expert approach is proposed in 
[23]. Numerical predictions of the long-term accumulation of 
plastic deformation and wear are shown in [24]. Development of 
indicators for structural health monitoring of common crossing, 
with track-side inertial measurements, is presented in [25]. 
The time and spectral features were extracted from inertial 
measurements, principal component analysis was used to develop 
the indicator. Studies of the strain-stress distribution in the 
flange rail assemblies of railway switch is presented in [26]. The 

Figure 1 The track-side inertial measurement systems (left - ESAH-M, right - RCF initiation on the frog nose)

Figure 2 Vertical acceleration signal and its IMF components at the beginning of the crossing lifecycle
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Results of the decomposition show the significant differences 
in range of the intrinsic mode functions, especially for IMF4-6. In 
addition, there are evident differences in form and spectrum of 
the functions. The second step of the HHT is the Hilbert spectral 
analysis that is applied to each IMF and yields instantaneous 
frequency and amplitude. The Hilbert transform ,H t~^ h , for the 
data X t^ h  is defined as follows:

,H t P t
X t

d1~ r x x= -3

3

-
^ ^h h# , 	 (1)
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The Hilbert energy spectrum is described as:

,E H w t dt
T 2

0
~ =^ ^h h# .	 (3)

moments during the lifecycle. The measurement results consist of 
information for each wheel axle: 3 components of acceleration, 
wheel impact position, longitudinal wheel speed. The overall data 
set contains the information for 2701 wheel axles. 

The feature extraction from acceleration signals is performed 
with HHT transform. The HHT consists of two steps: empirical 
mode decomposition (EMD) and Hilbert spectral analysis. The 
EMD decomposes signal to the intrinsic mode functions (IMFs) 
during the so-called “sifting process” where the mean signal 
envelopes are sequentially extracted [10]. The EMD provides 
many advantages compared to the short-time Fourier transform 
(STFT) and wavelet transform (WT): analysis of nonlinear and 
nonstationary signals, better time and frequency resolution. 
Numerous recent papers approve the successful application of 
the EMD in mechanical and civil engineering [27-28] for fault 
detection and prediction. In the present paper the Ensemble 
Empirical Mode Decomposition (EEMD) is used, that has no 
drawback of the mode mixing of EMD.

The results of the EMD decomposition in seven IMF for the 
two measured vertical accelerations, at the beginning and the end 
of the crossing lifecycle for the same and rolling stock and similar 
train velocity, are shown on the Figures 2 and 3.

Figure 3 Vertical acceleration signal and its IMF components at the end of the crossing lifecycle

Table 1 Feature set for one observation 

Abbr. Description

Vi wheel longitudinal velocity

AufsPos impact longitudinal position on the frog nose

xEn1 … xEn7 energy features for the lateral acceleration IMFs

yEn1 … yEn7 energy features for the vertical acceleration IMFs

zEn1 … zEn7 energy features for the longitudinal acceleration IMFs
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3.	 Assessment of the SH indicator relation  
to the crossing lifetime

All the extracted 23 features have some relation to the 
lifetime, but they are subjected to the high noise due to random or 
systematic factors, as well. Therefore, none of the single features 
is good enough to be used as the SH indicator. The best features 
should be selected and fused in one SH indicator. There are many 
approaches to fusing of the extracted features in one SH indicator. 
Often used are the linear methods Principal Components or 
Partial Least Square Regression [29]. Another group of methods 
is based on regularization techniques, like Ridge or Lasso 
regression that can provide the optimal features set selection and 
generalized linear regression. Advantage of the linear regression 
is a simple interpretation of the machine learning models due 
to analytical relation between the predictors and regressor. The 
nonlinear methods, like Support Vector Regression (SVR), 
Regression Trees, GPR provide much better prediction, however 
at the same time they are difficult for interpretation.

The energy spectrum features are extracted from each IMF by 
the Hilbert transform. There are seven energy features for each of 
the three acceleration components. Additionally, two operation 
conditions are included to the data set: the wheel longitudinal 
velocity and the impact longitudinal position on the frog nose. 
Therefore, 23 features correspond to one measurement or one 
wheel passing. The acronyms and description of the features are 
shown in Table 1.

Results of the Hilbert transform in form of instantaneous 
frequency for each IMF and the energy spectrum highlighting 
are shown in Figure 4. The diagrams correspond to the first two 
axle passages to provide the simpler visualization. The energy 
spectrum distribution among the IMFs and along the time axis is 
inhomogeneous. The highest energy spectrum is present in IMF1 
and IMF2 for the frequency range 1000-1500 Hz that contain 
more that 90 % of the total energy spectrum. The IMF has the 
highest energy spectrum in range of about 50 Hz.

Figure 4 The HHT spectra for IMF components and their energies for 2 axles
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3.1 Linear regression

The linear regression with the Lasso regularisation is used for 
the lifetime prediction of the common crossing. A multiple linear 
regression model is defined as follows:

y b x b x b xi i i p ip1 1 2 2 g= + + +t ,	 (4)

where: 
yit  	- estimated response,
bp 	- the fitted coefficients for p-predictor or feature,
xi 	 - the features of i-observation.

The Lasso regularization technique is used to identify 
important prediction among the redundant ones and therefore to 
obtain the lower prediction errors. The optimal bp  coefficients are 
found by solving the following problem:

min N y b x b b2
1

,b b
i i
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j
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0
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where: 
m 	 - a positive regularization parameter,
N	 - the number of observations.

Figure 5 demonstrates the results of the linear regression 
together with the SH indicator points for each measurement day 

Figure 5 Linear regression of the structural health indicator

Figure 6 Gaussian process regression of the structural health indicator

Figure 7 Feature importance ranking
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and longitudinal direction, is remarkable. The lowest influence 
have the features extracted from IMF6-7.

4.	 Discussion and conclusion

The study results have explored the possibilities of the HHT 
and EEMD application for monitoring and fault diagnostics of 
the common crossings. The methods allow to recover the deep 
relations to the crossing deterioration in the inertial measurement 
information. The undoubtable advantage of the applied feature 
extraction methods is the meaningful representation of the 
nonlinear and non-stationary processes. However, the extracted 
features show the nonlinear relations to the lifetime. That causes 
difficulties during the following feature fusion to the SH indicator 
by the linear regression methods. The linear regression with 
regularization provide the low prediction quality. The quality 
of prediction could be substantially enhanced by the nonlinear 
regression methods. The applied GP regression provides higher 
determination coefficient than the linear regression and therefore 
much better relation of SH indicator to the crossing lifetime. 
However, the better result of prediction brings also more difficult 
interpretation by the non-parametrical nonlinear GP regression 
with multiple predictor set. 

Despite the relatively good results of the HHT and GPR 
techniques application for the common crossing deterioration 
estimation, the possible challenges of their application should 
be noted, as well as the future solution ways. The prediction is 
performed for one common crossing and the model trained could 
not be applicable for another one. One model for many crossings 
should be developed and tested. The wide scatter range of the 
developed SH indicator can cause the low prediction quality for 
low number of observations. The scatter range could be explained 
by the acceleration measurements from different train types. That 
factor can be potentially taken into account what in turn could 
improve the prediction.

during the overall lifecycle of the common crossing. Results show 
some relation of the indicator to the lifetime but it is relatively 
weak one with the low coefficient of determination. One possible 
explanation of that fact could be the nonlinear behavior extracted 
from the EEMD features that could be explained by the nonlinear 
regression methods.

3.2 Gaussian Process Regression
In contrast to the linear regression, the Gaussian process 

regression is a non-parametric approach that finds a distribution 
over the possible functions that are consistent with the observed 
data. The Gaussian process is specified by its Kernel covariance 
function ,K x xl^ h  and mean function m x^ h . It can be defined 
as follows [30]:

, ,f x GP m x K x x+ l^ ^ ^ ^h h hh , 	 (6)

where:	m x E f x=^ ^h h6 @ , 
	 ,K x x f x m xE f x m x= - -l l l^ ^ ^ ^ ^h h h h h7 A" #, - .  

The Gaussian process based fault assessment and prediction 
are used in many studies [31-32]. The squared exponential Kernel 
covariance function is used in the present study for the model 
learning. The resulting SH indicator prediction, with the learned 
GPR model in 5 fold cross validation, is shown in Figure 6. 

Figure 6 shows the clear ascending trend of the SH indicator 
data points with monotonous growth of the mean values. The 
results of the GP regression, different to those of the linear 
regression, demonstrate much better relation of the SH indicator 
to the crossing lifetime. The polynomial fit shows narrow function 
bounds that are relatively low, compared to the explained function 
variation. Figure 7 shows the feature importance ranking for the 
GP regression. The highest influence has the operation condition 
feature - the train velocity. The high influence of the energy 
spectrum features, corresponding to the interaction in the lateral 
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