
ON REGULARITY OF WEAK SOLUTIONS TO ONE CLASS OF
INITIAL-BOUNDARY VALUE PROBLEM WITH

PSEUDO-DIFFERENTIAL OPERATORS

PETER I. KOGUT∗ AND JULIA A. MAKSIMENKOVA †

Abstract. We discuss solvability and some extra regularity properties for the weak solutions to one
class of the initial-boundary value problem arising in the study of the dynamics of an arterial system.
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1. Introduction. It is well known that the cardiovascular system transports oxygen
and nutrients to all the tissues of the body, from where it removes carbon dioxide and other
harmful waste products of cell metabolism. From a physical point of view, the system con-
sists of a pump that propels a viscous liquid (the blood) through a network of flexible tubes.
The heart provides energy to move blood through the circulatory system and is one key com-
ponent in the complex control mechanism of maintaining pressure in the vascular system
[18]. The aorta is the main artery originating from the left ventricle and then bifurcates to
other arteries, and is identified by several segments (ascending, thoracic, abdominal). There
are several features of the aorta that have an effect on the blood flow, such as the tapering
of the aorta or the fact that ascending aorta is arched (curved). Still, the functionality of
the aorta, considered as a single segment, is worth exploring from a modeling perspective,
in particular in relationship to the presence of the aortic valve.

There has been extensive literature describing the dynamics of the vascular network
coupled with a heart model (e.g. [8], [9], [10], [11], [17], [21]), the majority focusing on
either a detailed description of the four chambers of the heart or on the spatial dynamics in
the aorta, but not on both. In fact, there seem to be no studies addressing the heart rate
variability based on the detailed spatial description of the pressure and flow patterns in the
aorta.

Taking into account the elasticity of the aorta, considered as a single vessel, together
with an aortic valve model at the inflow and a peripheral resistance model at the outflow, we
can capture through simulation the dynamics of the pressure and flow in the aorta as well
as the heart rate variability. In view of this, we make use of the standard viscous hyperbolic
system (see [2], [15], [21]) which models cross-section area S(x, t) and average velocity u(x, t)
in the spatial domain:

∂S

∂t
+
∂(Su)

∂x
− ν ∂

2S

∂x2
= 0, (1.1)
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∂t
+ u
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∂x
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1

ρ

∂P

∂x
= f, (1.2)

where (t, x) ∈ Q = (0, T ) × (0, L), f = f(x, t) is a friction force, usually taken to be
f = −22µπu/S, µ is the fluid viscosity, P (x, t) is the hydrodynamic pressure, L is the
length of an arterial segment, and T = Tpulse = 60/(HartRate) is the duration of an entire
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heartbeat. Here we include the inertial effects of the wall motion, described by the wall
displacement η = η(x, t):

η = r − r0 =
1√
π

(
√
S −

√
S0) ' S − S0

2
√
πS0

. (1.3)

The fluid structure interaction is modeled using inertial forces, which gives the pressure law
(see [3], [8])

P = Pext +
β

r2
0

η + ρωh
∂2η

∂t2
= Pext +

β

S0
(
√
S −

√
S0) +m

∂2S

∂t2
, (1.4)

where r(x, t) is the radius, r0 = r(x, 0), S0 = S(x, 0), Pext is the external pressure, β =
E

1−σ2h, σ is the Poisson ratio (usually taken to be σ2 = 1
2 ), E is Young modulus, h is the

wall thickness, m = ρωh
2
√
πA0

, ρω is the density of the wall.

This leads to the following Boussinesq system (for the details we refer to [4]):
ηt + ηxu+

1

2
(η + r0)ux = 0,

ut + uux +
2Eh

ρr2
0

ηx +
ρωh

ρ
ηxtt = f,

(1.5)

where ρ is the blood density. Considering the relation ηt = − 1
2r0ux, we get the system:


ηt + ηxu+

1

2
(η + r0)ux = 0,

ut + uux +
2Eh

ρr2
0

ηx −
ρωhr0

2ρ
uxxt = f,

(1.6)

or, rearranging terms in u,
ηt + ηxu+

1

2
(η + r0)ux = 0,(

u− ρωhr0

2ρ
uxx

)
t

+
1

2
(u2)x +

2Eh

ρr2
0

ηx = f.
(1.7)

It remains to furnish the system (1.7) by corresponding initial and boundary conditions.

Since the solvability of the corresponding initial-boundary value problem is not clear in
the case of non-homogeneous Dirichlet boundary conditions, the aim of this paper is consider
a relaxed statement of this problem. Namely, following the method of vanishing viscosity,
we suppose that νηxx is small enough, and as a result, instead of (1.7), we can deal with
the nonlinear problem of Sobolev type.

2. Preliminaries. Let T > 0 be a given value. Let also Ω = (0, 1), Q = (0, T ) × Ω,
and Σ = (0, T ) × ∂Ω. Let δ : R → R be a locally integrable function on R such that
δ(x) ≥ δ0 > 0 for a.e. x ∈ Ω. We will use the standard notion L2(Ω, δ dx) for the set of
measurable functions u on Ω such that

‖u‖L2(Ω,δ dx) =

(∫
Ω

u2δ dx

)1/2

< +∞.
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We set H = L2(Ω), V0 = H1
0 (Ω), and identify the Hilbert space H with its dual H∗. On H

we use the common natural inner product (·, ·)H , and endow the Hilbert space V0 with the
inner product

(ϕ,ψ)V0
= (ϕ′, ψ′)H for all ϕ,ψ ∈ V0.

We also make use of the weighted Sobolev space Vδ as the set of functions u ∈ V0 for which
the norm

‖u‖δ =

(∫
Ω

[
u2 + δ(u′)2

]
dx

)1/2

is finite. Note that due to the estimate

‖u‖2V0
:=

∫
Ω

(u′)2 dx ≤ δ−1
0

∫
Ω

δ(u′)2 dx ≤ δ−1
0

∫
Ω

[
u2 + δ(u′)2

]
dx = δ−1

0 ‖u‖2Vδ (2.1)

the space Vδ is complete with respect to the norm ‖ · ‖Vδ .
We recall that the dual space of the weighted Sobolev space Vδ is equivalent to V ∗δ =

W−1,2(Ω, δ−1 dx) (for more details see [6]).
Remark 2.1. In what follows, we make use of the following result: if there exists a

value ν ∈ [1,+∞) such that δ−ν ∈ L1(Ω), then the expression (see [6, pp.46]):

‖y‖Vδ =

[∫
Ω

(u′)2δ dx

]1/2

(2.2)

can be considered as a norm on Vδ and it is equivalent to the norm ‖ · ‖δ. Moreover, in this
case the embedding Vδ ↪→ L2(Ω) is compact. Since

‖δ−1‖L1(Ω) =

∫
Ω

|δ−1| dx ≤ δ−1
0 |Ω| < +∞,

it follows that ν = 1 satisfies the inclusion ν ∈ [1,+∞).
Recall that V0 and, hence, Vδ are continuously embedded into C(Ω), see [1, 14] for

instance. Moreover, in view of Friedrich’s inequality

‖u‖H ≤ ‖ux‖H = ‖u‖V0 , ∀u ∈ V0 (2.3)

and the obvious relation, for any x, y ∈ Ω, y > x,

u2(y) =

(
u(x) +

∫ y

x

u′(s) ds

)2

≤
(
u(x) +

√
y − x ‖u′‖H

)2 ≤ 2u2(x) + 2‖u′‖2H ,

we have

u2(y) =

∫
Ω

u2(y) dx ≤ 2
(
‖u‖2H + ‖u′‖2H

)
= 2

(
‖u‖2H + ‖u‖2V0

)
= 4‖u‖2V0

, ∀ y ∈ Ω.

Therefore,

‖u‖L∞(Ω) ≤ 2‖u‖V0 ∀u ∈ V0. (2.4)
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We also recall the Agmon’s inequality (see [22, p.52]): there exists a constant CA > 0
such that

‖u‖L∞(Ω) ≤ CA‖u‖
1/2
H ‖u‖

1/2
V0

∀u ∈ V0. (2.5)

Remark 2.2. Since δ, δ−1 ∈ L1(Ω), it follows that Vδ is a uniformly convex separable
Banach space [14]. Moreover, in view of the estimate (2.1), the embedding Vδ ↪→ H is
continuous and dense. Hence, H = H∗ is densely and continuous embedded in V ∗δ , and,
therefore, Vδ ↪→ H ↪→ V ∗δ is a Hilbert triplet (see [12] for the details).

By L2(0, T ;V0) we denote the space of (equivalence classes) of measurable abstract
functions u : [0, T ]→ V0 such that

‖u‖L2(0,T ;V0) :=

(∫ T

0

‖u(t)‖2V0
dt‖

)1/2

< +∞.

By analogy we can define the spaces L2(0, T ;Vδ), L
∞(0, T ;H), L∞(0, T ;Vδ), and C([0, T ];H)

(for the details, we refer to [5]). In what follows, when t is fixed, the expression u(t) stands
for the function u(t, ·) considered as a function in Ω with values into a suitable functional
space. When we adopt this convention, we write u(t) instead of u(t, x) and u̇ instead of ut
for the weak derivative of u in the sense of distribution∫ T

0

ϕ(t) 〈u̇(t), v〉V ∗0 ;V0
dt = −

∫ T

0

ϕ̇(t) 〈u(t), v〉V ∗0 ;V0
dt ∀ v ∈ V0,

where 〈·, ·〉V ∗0 ;V0
denotes the pairing between V ∗0 ) and V0. Here, V ∗0 = H−1(Ω) is the dual

space to V0.

We also make use of the Hilbert spaces

W0(0, T ) =
{
u ∈ L2(0, T ;V0) : u̇ ∈ L2(0, T ;V ∗0 )

}
and

Wδ(0, T ) =
{
u ∈ L2(0, T ;Vδ) : u̇ ∈ L2(0, T ;V ∗δ )

}
,

supplied with their common inner product, see [5, p.473], for instance.

Remark 2.3. The following result is fundamental (see [5]): Let (V0, H, V
∗
0 ) be a Hilbert

triplet, V0 ↪→ H ↪→ V ∗0 , with V0 separable, and let u ∈ L2(0, T ;V0) and u̇ ∈ L2(0, T ;V ∗0 ).
Then

• u ∈ C([0, T ];H) and there exists CE > 0 such that

max
1≤t≤T

‖u(t)‖H ≤ CE
[
‖u‖L2(0,T ;V0) + ‖u̇‖L2(0,T ;V ∗0 )

]
; (2.6)

• if v ∈ L2(0, T ;V0) and v̇ ∈ L2(0, T ;V ∗0 ), then the following integration by parts
formula holds:∫ t

s

[
〈u̇(γ), v(γ)〉V ∗0 ;V0

+ 〈u(γ), v̇(γ)〉V ∗0 ;V0

]
dγ = (u(t), v(t))H − (u(s), v(s))H (2.7)

for all s, t ∈ [0, T ].
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Moreover, as immediately follows from Remark 2.2, the similar assertion is valid for the
Hilbert triplet Vδ ↪→ H ↪→ V ∗δ .

In what follows, we make use of the following technical result (see (2.7) for comparison)
Lemma 2.1. Let u ∈ Wδ(0, T ) be a given distribution and let aδ : Vδ × Vδ → R be the

bilinear form which is defined as follows

aδ(u, v) =

∫
Ω

δu′v′ dx, ∀u, v ∈ Vδ. (2.8)

Then

2

∫ t

s

[
〈u̇(γ), u(γ)〉V ∗δ ;Vδ

+ aδ (u̇(γ), u(γ))
]
dγ (2.9)

= ‖u(t)‖2H + ‖u(t)‖2Vδ − ‖u(s)‖2H − ‖u(s)‖2Vδ for all s, t ∈ [0, T ]. (2.10)

Proof. We set

û(t) =

{
u(t), t ∈ [0, T ],
0, otherwise

and regularize it by the convolution in t, i.e. we consider

uε = û ∗ ρε, where ρε(t) =
1

ε
ρ

(
t

ε

)
, ρ ∈ D+(R),

∫
R
ρ(t) dt = 1.

As a result, we obtain a sequence {uε}ε>0 with the properties
uε ∈ C∞([0, T ];Vδ), ∀ ε > 0,

uε → u strongly in L2
loc(0, T ;Vδ) as ε→ 0,

u̇ε → u̇ strongly in L2
loc(0, T ;Vδ), as ε→ 0.

(2.11)

It is easy to see that for each ε > 0 the following equalities

d

dt

[
(uε(t), uε(t))H + aδ (uε(t), uε(t))︸ ︷︷ ︸

‖uε(t)‖2H+‖uε(t)‖2Vδ

]
= 2 (u̇ε(t), uε(t))H + 2 aδ (u̇ε(t), uε(t)) , (2.12)

(u̇ε(t), uε(t))H = 〈u̇ε(t), uε(t)〉V ∗δ ;Vδ

hold true. Moreover, it is worth to note that by properties (2.11) we have:

‖uε(t)‖2H → ‖u(t)‖2H ,
(u̇ε(t), uε(t))H → (u̇(t), u(t))H ,

aδ (u̇ε(t), uε(t))→ aδ (u̇(t), u(t))

strongly in L1
loc(0, T ) as ε → 0. Taking this fact into account, we can pass to the limit in

(2.12) (in the sense of distribution D′(0, T )) as ε→ 0. As a result, we arrive at the relation

d

dt
[(u(t), u(t))H + aδ (u(t), u(t))] = 2 〈u̇(t), u(t)〉V ∗δ ;Vδ

+ 2aδ (u̇(t), u(t)) in D′(0, T ).

(2.13)
Since ‖u(·)‖2H ∈ L1(0, T ), aδ (u(·), u(·)) ∈ L1(0, T ), and 〈u̇(·), u(·)〉V ∗δ ;Vδ

∈ L1(0, T ), after

integration of (2.13), we arrive at the desired equality (2.9).
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3. Setting of the Dirichlet Initial-Boundary Value Problem. Let ν > 0 be a
viscosity parameter, and let

f ∈ L∞(0, T ;L2(Ω)), µ ∈ L∞(0, T ;L2(Ω)), g ∈W 1,∞
0 (0, T ), h ∈W 1,∞

0 (0, T ), (3.1)

u0 ∈ Vδ, η0 ∈ L∞(Ω), r0 ∈ L2(Ω), δ ∈ L1(Ω) (3.2)

are given distributions, where f stands for a fixed forcing term, u0 and η0 are given initial
states, and δ is a singular (probably locally unbounded) weight function such that δ(x) ≥
δ0 > 0 for a.e. x ∈ Ω.

The Dirichlet initial-boundary value problem we consider in this paper can be repre-
sented in the form of the following viscous Boussinesq system:

ηt + ηxu+
1

2
ηux +

1

2
r0ux − νηxx = 0 in Q,

[u− (δux)x]
t

+
1

2
(ux)

2
+ µηx = f in Q,

(3.3)

with the initial

η(0, ·) = η0 u(0, ·) = u0 in Ω, (3.4)

and boundary conditions{
η(·, 0) = η(·, 1) = η∗ in (0, T ),

u(·, 0) = g(·), u(·, 1) = h(·) in (0, T ).
(3.5)

In order to give a precise description of the weak solutions to this problem, we define
the following bilinear and trilinear forms

a1(ϕ,ψ) = ν

∫
Ω

ϕ′ψ′ dx ∀ϕ,ψ ∈ V0, (3.6)

a2(ϕ,ψ) =

∫
Ω

δϕ′ψ′ dx ∀ϕ,ψ ∈ Vδ, (3.7)

b1(ϕ,ψ, φ) =

∫
Ω

[
ϕ′ψφ+

1

2
ϕψ′φ

]
dx ∀ϕ,ψ, φ ∈ V0, (3.8)

b2(ϕ,ψ, φ) =
1

3

∫
Ω

[
(ϕψ)

′
φ+ ϕψ′φ

]
dx ∀ϕ,ψ, φ ∈ Vδ. (3.9)

Since Vδ is continuously embedded into C(Ω), it easily follows from (3.6)–(3.9) that each of
these forms are continuous. Indeed, let us consider the form b1(ϕ,ψ, φ) for instance. We
have

|b1(ϕ,ψ, φ)| ≤ ‖φ‖C(Ω)

[∫
Ω

|ϕ′||ψ| dx+
1

2

∫
Ω

|ϕ||ψ′| dx
]

by (2.4)

≤ 2‖φ‖V0

[
‖ϕ′‖H‖ψ‖H +

1

2
‖ϕ‖H‖ψ′‖H

]
by (2.3)

≤ 3‖φ‖V0‖ϕ‖V0‖ψ‖V0 .

Moreover, direct calculations show that

b1(ϕ,ψ, ϕ) = 0 for all ϕ ∈ V0 and ψ ∈ Vδ, (3.10)

b2(ϕ,ϕ, φ) =

∫
Ω

ϕϕ′φdx for all ϕ, φ ∈ Vδ. (3.11)
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Definition 3.1. We say that, for given g ∈W 1,∞
0 (0, T ) and h ∈W 1,∞

0 (0, T ), a couple
of functions (η(t), u(t)) is a weak solution to the initial-boundary value problem (3.3)–(3.5)
if

η(t) = w(t) + η∗, u(t) = v(t) + u∗(t), u∗(t) = g(t)− [h(t)− g(t)]x, (3.12)

w(·) ∈W0(0, T ), v(·) ∈Wδ(0, T ), (3.13)

(w(0), χ)H = (η0 − η∗, χ)H for all χ ∈ H, (3.14)

(u(0), χ)Vδ = (u0, χ)Vδ for all χ ∈ Vδ, (3.15)

〈ẇ(t), ϕ〉V ∗0 ;V0
+ a1(w(t), ϕ) + b1(w(t), v(t), ϕ) + b1(w(t), u∗(t), ϕ) (3.16)

+
1

2
([r0 + η∗] vx(t), ϕ)H +

1

2
([r0 + η∗] [g(t)− h(t)] , ϕ)H = 0, (3.17)

〈v̇(t), ψ〉V ∗δ ;Vδ
+ a2(v̇(t), ψ) + b2(v(t), v(t), ψ) + (vx(t)u∗x, ψ)H + (µ(t)wx(t), ψ)H

= (f(t), ψ)H − (u̇∗(t), ψ)H − b2(u∗(t), u∗(t), ψ) (3.18)

for all ϕ ∈ V0 and ψ ∈ Vδ and a.e. t ∈ [0, T ].
Remark 3.1. Let us mention that if we multiply the left- and right-hand sides of

equations (3.17)–(3.18) by function χ ∈ L2(0, T ) and integrate the result over the interval
(0, T ), all integrals are finite. Moreover, closely following the arguments of Korpusov and
Sveshnikov (see [13]), it can be shown that the weak solution to (3.3)–(3.5) in the sense
of Definition 3.1 is equivalent to the following one: (η(t), u(t)) is a weak solution to the
initial-boundary value problem (3.3)–(3.5) if the conditions (3.12)-(3.15) hold true and∫ T

0

〈A1(w(t), u(t)), ϕ(t)〉V ∗0 ;V0
dt = 0, ∀ϕ(·) ∈ L2(0, T ;V0), (3.19)∫ T

0

〈A2(w(t), u(t)), ψ(t)〉V ∗δ ;Vδ
dt = 0, ∀ψ(·) ∈ L2(0, T ;Vδ), (3.20)

where

A1(w, u) =
∂

∂t
w − νwxx + wx(v + u∗) +

1

2
(w + η∗)(vx + u∗x) +

1

2
r0(vx + u∗x), (3.21)

A2(w, u) =
∂

∂t
(v − (δvx)x) +

1

2

(
v2
)
x

+ vxu
∗
x + µwx − f +

∂

∂t
u∗ +

1

2

(
(u∗)2

)
x
. (3.22)

4. On Uniqueness of Weak Solutions to the Viscous Boussinesq System. Let

(ηi(t), ui(t)) =
(
wi(t) + η∗, vi(t) + u∗(t)

)
∈ [W0(0, T ) + η∗]× [Wδ(0, T ) + u∗(t)]

(i = 1, 2) be two weak solutions to the initial-boundary value problem (3.3)–(3.5) for a given
boundary influences g ∈W 1,∞

0 (0, T ) and h ∈W 1,∞
0 (0, T ). We set

η(t) = η1(t)− η2(t), w(t) = w1(t)− w2(t), u(t) = u1(t)− u2(t), v(t) = v1(t)− v2(t).

Since

b1(w1, v1, φ)− b1(w2, v2, φ) = b1(w, v1, φ) + b1(w2, v, φ),

b2(v1, v1, ψ)− b2(v2, v2, ψ) =

∫
Ω

[
v1vxψ + vv2

xψ
]
dx,
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it follows that the distributions w(·) and v(·) satisfy the following system

〈ẇ(t), ϕ〉V ∗0 ;V0
+ a1(w(t), ϕ) + b1(w(t), v1(t), ϕ) + b1(w2(t), v(t), ϕ) + b1(w(t), u∗(t), ϕ)

+
1

2
([r0 + η∗]vx(t), ϕ)H = 0, ∀ϕ ∈ V0 and a.e. t ∈ [0, T ], (4.1)

〈v̇(t), ψ〉V ∗δ ;Vδ + a2(v̇(t), ψ) +

∫
Ω

[
v1(t)vx(t)ψ + v(t)v2

x(t)ψ
]
dx+ (µ(t)wx(t), ψ)H

+ (vx(t)u∗x, ψ)H = 0, ∀ψ ∈ Vδ and a.e. t ∈ [0, T ], (4.2)

w(0) = 0 in H and v(0) = 0 in Vδ. (4.3)

Due to Remark 3.1, we can choose ϕ = w(t) and ψ = v(t) in relations (4.1)–(4.2). Then,
upon this choosing, and Lemma 2.1 (see also Remark 2.3), we have

b1(w(t), v1(t), w(t))
by (3.10)

= 0,

b1(w(t), u∗(t), w(t))
by (3.10)

= 0,

b1(w2(t), v(t), w(t)) =

∫
Ω

[(
w2(t)

)
x
v(t)w(t) +

1

2
w2(t)vx(t)w(t)

]
dx

= −
∫

Ω

[
1

2
vx(t)w(t) + v(t)wx(t)

]
w2(t) dx

and, therefore, relations (4.1)–(4.2) lead us to the equalities

1

2

d

dt
‖w(t)‖2H + ν‖w(t)‖2V0

−
∫

Ω

[
1

2
vx(t)w(t) + v(t)wx(t)

]
w2(t) dx

+
1

2

∫
Ω

[r0 + η∗] vx(t)w(t) dx = 0, for a.e. t ∈ [0, T ], (4.4)

1

2

d

dt

[
‖v(t)‖2H +

∫
Ω

δ (vux(t))
2
dx

]
+

∫
Ω

[
v1(t)vx(t) + v(t)v2

x(t)
]
v(t) dx

+

∫
Ω

µ(t)wx(t)v(t) dx+

∫
Ω

vx(t)u∗x(t)v(t) dx = 0, for a.e. t ∈ [0, T ]. (4.5)

For our further analysis we make use of the Young’s and Gronwall’s inequalities.

• (Young’s Inequality) For all a, b, ε > 0 and for all p ∈ (1,+∞), we have

ab ≤ εap

p
+

bq

qεq/p
, with q = p/(p− 1); (4.6)

• (Gronwall’s Inequality) Let c be a positive constant. Suppose that ϕ ∈ L1(0, T )
and ϕ(t) is non-negative for a.e. t ∈ [0, T ]. If ψ ∈ C([0, T ]) satisfies the inequality

ψ(t) ≤ c+

∫ t

0

ϕ(s)ψ(s) ds for all t ∈ [0, T ],

then we have

ψ(t) ≤ c exp

(∫ t

0

ϕ(s) ds

)
for all t ∈ [0, T ].
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Taking into account these inequalities, we conclude that

1

2

∫
Ω

vx(t)w(t)w2(t) dx ≤ 1

2
‖w2(t)‖H‖vx(t)‖H‖w(t)‖L∞(Ω)

by (2.4)

≤ 2 ‖w2(t)‖H‖vx(t)‖H‖w(t)‖V0

by (2.6)

≤ 2 ‖w2‖C([0,T ];H)‖vx(t)‖H‖w(t)‖V0

≤ 2CE ‖w2‖W0(0,T )‖vx(t)‖H‖w(t)‖V0

by (4.6)

≤ CE ‖w2‖W0(0,T )

[
ε‖vx(t)‖2H +

1

ε
‖w(t)‖2V0

]
{
ε=

6CE ‖w2‖W0(0,T )
ν

}

=
6C2

E ‖w2‖2W0(0,T )

ν
‖vx(t)‖2H +

ν

6
‖w(t)‖2V0

by (2.1)

≤
6C2

E ‖w2‖2W0(0,T )δ
−1
0

ν︸ ︷︷ ︸
C1

‖v(t)‖2Vδ +
ν

6
‖w(t)‖2V0

. (4.7)

Proceeding in the similar manner, we get∫
Ω

v(t)wx(t)w2(t) dx ≤ ‖w2(t)‖H‖wx(t)‖H‖v(t)‖L∞(Ω)

by (2.4)

≤ 2

√
δ−1
0 ‖w2(t)‖H‖wx(t)‖H‖v(t)‖Vδ

by (2.6)

≤ 2CE

√
δ−1
0 ‖w2‖W0(0,T )‖wx(t)‖H‖v(t)‖Vδ

by (4.6)

≤ CE

√
δ−1
0 ‖w2‖W0(0,T )

[
ε‖wx(t)‖2H +

1

ε
‖v(t)‖2Vδ

]{
ε= ν

6CE

√
δ
−1
0 ‖w2‖W0(0,T )

}

=
6C2

Eδ
−1
0 ‖w2‖2W0(0,T )

ν︸ ︷︷ ︸
C2

‖v(t)‖2Vδ +
ν

6
‖w(t)‖2V0

, (4.8)

and

1

2

∫
Ω

[r0 + η∗] vx(t)w(t) dx ≤ 1

2
‖r0‖H‖vx(t)‖H‖w(t)‖L∞(Ω) +

1

2
η∗‖vx(t)‖H‖w(t)‖H

by (2.4),(2.3)

≤
[
‖r0‖H +

η∗

2

]
‖vx(t)‖H‖w(t)‖V0

≤
[
‖r0‖H +

η∗

2

] [
ε

2
‖vx(t)‖2H +

1

2ε
‖w(t)‖2V0

]
{ε= 3

ν [‖r0‖H+ η∗
2 ]}

=
3

2ν

[
‖r0‖H +

η∗

2

]2

‖vx(t)‖2H +
ν

6
‖w(t)‖2V0

(4.9)

by (2.1)

≤ 3

2ν

[
‖r0‖H +

η∗

2

]2

δ−1
0︸ ︷︷ ︸

C3

‖v(t)‖2Vδ +
ν

6
‖w(t)‖2V0

. (4.10)

Combining the estimates (4.7)–(4.10), we obtain

1

2

d

dt
‖w(t)‖2H +

ν

2
‖w(t)‖2V0

≤ [C1 + C2 + C3] ‖v(t)‖2Vδ for a.e. t ∈ [0, T ].
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Hence, taking into account the initial condition (4.3), after integration, we get

‖w(t)‖2H ≤ 2 [C1 + C2 + C3]

∫ t

0

‖v(s)‖2Vδ ds for a.e. t ∈ [0, T ], (4.11)∫ t

0

‖w(s)‖2V0
ds ≤ 2

ν
[C1 + C2 + C3]

∫ t

0

‖v(s)‖2Vδ ds. (4.12)

Proceeding in the similar manner with the estimation for the equation (4.5), we obtain∫
Ω

vx(t)u∗x(t)v(t) dx = (h(t)− g(t))

∫
Ω

vx(t)v(t) dx

≤
(
‖h‖L∞(0,T ) + ‖g‖L∞(0,T )

)
‖v(t)‖H‖vx(t)‖H

by (2.3)

≤
(
‖h‖L∞(0,T ) + ‖g‖L∞(0,T )

)
‖vx(t)‖2H

by (2.1)

≤
(
‖h‖L∞(0,T ) + ‖g‖L∞(0,T )

)
δ−1
0︸ ︷︷ ︸

D1

‖v(t)‖2Vδ . (4.13)

Applying the similar arguments, we get∫
Ω

µ(t)wx(t)v(t) dx ≤ ‖µ(t)‖H‖wx(t)‖H‖v(t)‖L∞(Ω)

≤ 2

√
δ−1
0 ‖µ(t)‖H‖wx(t)‖H‖v(t)‖Vδ ≤

√
δ−1
0 ‖µ(t)‖H

[
ε‖wx(t)‖2H +

1

ε
‖v(t)‖2Vδ

]
=

{
letting ε =

√
δ−1
0 ‖µ(t)‖H

}
= δ−1

0 ‖µ(t)‖2H‖wx(t)‖2H + ‖v(t)‖2Vδ

≤ δ−1
0 ‖µ‖2L∞(0,T ;L2(Ω))︸ ︷︷ ︸

D0

‖w(t)‖2V0
+ ‖v(t)‖2Vδ (4.14)

and ∫
Ω

v1(t)vx(t)v(t) dx ≤ ‖v1(t)‖H‖vx(t)‖H‖v(t)‖L∞(Ω)

by (2.5), (2.6)

≤ CA‖v1‖C([0,T ];H)‖vx(t)‖H‖v(t)‖1/2H ‖v(t)‖1/2V0

by (2.6),(2.1)

≤ CACE‖v1‖Wδ(0,T )‖v(t)‖3/2V0
‖v(t)‖1/2H

≤ CACE‖v1‖Wδ(0,T )‖v(t)‖2V0

by (2.1)

≤ CACEδ
−1
0 ‖v1‖Wδ(0,T )︸ ︷︷ ︸
D2

‖v(t)‖2Vδ (4.15)

and ∫
Ω

v2
x(t) [v(t)]

2
dx ≤ ‖v2

x(t)‖H‖v(t)‖H‖v(t)‖L∞(Ω)

by (2.5)

≤ CA‖v2(t)‖V0
‖v(t)‖3/2H ‖v(t)‖1/2V0

≤ CA‖v2(t)‖V0
‖v(t)‖2V0

by (2.1)

≤ CAδ
−3/2
0 ‖v2(t)‖Vδ︸ ︷︷ ︸

D3(t)

‖v(t)‖2Vδ . (4.16)
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In view of the estimates (4.13)–(4.16), we can conclude from (4.5) that

1

2

d

dt

[
‖v(t)‖2H +

∫
Ω

δ (vx(t))
2
dx
]
≤ D0‖w(t)‖2V0

+ [D1 +D2 +D3(t)] ‖v(t)‖2Vδ

for a.e. t ∈ [0, T ]. Hence, after integration, we arrive at the fulfilment for a.e. t ∈ [0, T ] of
the following inequality

‖v(t)‖2H + ‖v(t)‖2Vδ ≤ 2D0

∫ t

0

‖w(s)‖2V0
ds+ 2

∫ t

0

[D1 +D2 +D3(s)] ‖v(s)‖2Vδ ds

by (4.12)

≤ 2

∫ t

0

[
2D0

ν

(
C1 + C2 + C3

)
+
(
D1 +D2 +D3(s)

)]
︸ ︷︷ ︸

C∗(s)

‖v(s)‖2Vδ ds (4.17)

Gathering together the estimates (4.17) and (4.11), we finally conclude that the inequality

‖w(t)‖2H + ‖v(t)‖2Vδ ≤ 2

∫ t

0

[C1 + C2 + C3 + C∗(s)]
(
‖w(s)‖2H + ‖v(s)‖2Vδ

)
ds (4.18)

holds true for a.e. t ∈ [0, T ]. Taking into account the fact that

∫ T

0

D3(t) dt ≤
√
T

(∫ T

0

|D3(t)|2 dt

)1/2

=
√
TCAδ

−3/2
0 ‖v2‖L2(0,T ;Vδ) < +∞,

we have C∗(·) ∈ L1(0, T ). Hence, by Gronwall’s inequality, we derive from (4.18) that

‖w(t)‖2H + ‖v(t)‖2Vδ = 0 for a.e. t ∈ [0, T ]. (4.19)

Now we can summarize the obtained result as follows:
Lemma 4.1. Assume that the conditions (3.1) hold true. Let (η(·), u(·)) be a weak

solution to the system (3.3)–(3.5) in the sense of Definition 3.1. Then this solution is
unique in [W0(0, T ) + η∗]× [Wδ(0, T ) + u∗].

5. On Existence of Weak Solutions to the Viscous Boussinesq System. In or-
der to prove the existence of the corresponding weak solutions to the initial-boundary value
problem (3.3)–(3.5), we will follow the well-known Faedo-Galerkin method which is also con-
venient for numerical approximations. With that in mind, we consider a finite-dimensional
approximation of the problem (3.3)–(3.5). Namely, since V0 and Vδ are separable Hilbert
spaces and since C∞0 (Ω) and C∞0 (R) are dense in V0 and Vδ, respectively, it follows that there
exist two sequences of smooth functions {ζk}k∈N and {ξk}k∈N such that {ζk}k∈N constitutes
an orthogonal basis in V0 and an orthonormal basis in H, and {ξk}k∈N constitutes an or-

thonormal basis in Vδ with respect to the equivalent norm
√
‖ · ‖2H + ‖ · ‖2Vδ). In particular,

it means that

(ξk, ξn)H =

{
‖ξk‖2H , if k = n,
0, otherwise,

(ζk, ζn)V0
=

{
‖ζk‖2V0

, if k = n,
0, otherwise,

(ξk, ξn)H + (ξk, ξn)Vδ = δkn, (ζk, ζn)H = δkn,

where δkn stands for the Kronecker delta.
Remark 5.1. In order to construct the sequence {ξk}k∈N (resp., {ζk}k∈N) with prop-

erties indicated before, we can choose as ξk (resp., ζk) the Dirichlet eigenfunctions of the
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operator Aw = − (δw′)
′
+w (resp., the Dirichlet eigenfunctions of Aw = −w′′) and norma-

lize them with respect to the norm
√
‖ · ‖2H + ‖ · ‖2Vδ in Vδ (resp., in H).

Following the main idea of Faedo-Galerkin method, we construct two sequences of finite-
dimensional subspaces

Vδ,m = span {ξ1, . . . , ξm} and V0,m = span {ζ1, . . . , ζm} . (5.1)

As a result, we have

Vδ,m ⊂ Vδ,m+1, V0,m ⊂ V0,m+1, ∪Vδ,m = Vδ, ∪V0,m = V0.

Further, for a fixed m, we set

wm(t) =

m∑
k=1

ck(t)ζk, vm(t) =

m∑
k=1

dk(t)ξk, (5.2)

wm(0) = Wm :=

m∑
k=1

αkζk, vm(0) = Um :=

m∑
k=1

βkξk, (5.3)

αk = (η0 − η∗, ζk)H , βk = (u0, ξk)H + ((u0)x, (ξk)x)L2(Ω;δ dx)

and it is clear that

wm(0)→ η0 − η∗ strongly in H, vm(0)→ u0 strongly in Vδ. (5.4)

Definition 5.1. We say that a couple of distributions

(wm(t) + η∗, vm(t) + u∗(t)) ∈ [W0(0, T ) + η∗]× [Wδ(0, T ) + u∗]

is a Galerkin approximation of the weak solution (w(t) + η∗, u(t) + u∗(t)) to the system
(3.3)–(3.5) if wm(t) and vm(t) have the representation (5.2)–(5.3) and satisfy the following
approximate variational problem

〈ẇm(t), ζk〉V ∗0 ;V0
+ a1(wm(t), ζk) + b1(wm(t), vm(t), ζk) + b1(wm(t), u∗(t), ζk)

+
1

2
([r0 + η∗] [vm(t)]x , ζk)

H
+

1

2
([r0 + η∗] [g(t)− h(t)] , ζk)H = 0, (5.5)

〈v̇m(t), ξk〉V ∗δ ;Vδ + a2(v̇m(t), ξk) + b2(vm(t), vm(t), ξk) + (µ(t) [wm(t)]x , ξk)
H

+ ([vm(t)]x u
∗
x(t), ψ)

H
= (f(t), ξk)H − (u̇∗(t), ξk)H − b2(u∗(t), u∗(t), ξk) (5.6)

for a.e. t ∈ [0, T ] and every k = 1, . . . ,m.
Remark 5.2. Since ẇm ∈ L2(0, T ;V0) and v̇m ∈ L2(0, T ;Vδ) for any Galerkin approx-

imation, it follows that

〈ẇm(t), ζk〉V ∗0 ;V0
= (ẇm(t), ζk)H and 〈v̇m(t), ξk〉V ∗δ ;Vδ

= (v̇m(t), ξk)H . (5.7)

The following assertion holds true.
Proposition 5.2. Under assumptions (3.1)–(3.2), for each m ∈ N, there exists Tm > 0

such that the Galerkin approximation (wm(t) + η∗, um(t) +u∗(t)) of the weak solution to the
system (3.3)–(3.5) is unique on [0, Tm]. Moreover, in this case we have{

wm ∈ H1(0, Tm;V0,m), vm ∈ H1(0, Tm;Vδ,m),

wm ∈ C([0, Tm];V0,m), vm ∈ C([0, Tm];Vδ,m).
(5.8)
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Proof. To begin with, let us show that unknown coefficients {ck(t)}k∈N and {dk(t)}k∈N
can be defined from the system (5.3),(5.5),(5.6) in a unique way on some appropriate time
interval [0, Tm]. To do so, we note that because of orthonormality of the sequences of smooth
functions {ζk}k∈N and {ξk}k∈N in H, we have for all k = 1, . . . ,m

(ẇm(t), ζk)H =
( m∑
s=1

ċs(t)ζs, ζk

)
H

= ċk(t),

(v̇m(t), ξk)H =
( m∑
s=1

ḋs(t)ξs, ξk

)
H

= ḋk(t)‖ξk‖2H .

Moreover, the orthogonality of these systems in V0 and Vδ, respectively, implies

a1(wm(t), ζk) = ν (ζ ′k, ζ
′
k)H ck(t) = ν‖ζk‖2V0

ck(t),

a2(v̇m(t), ξk) =

m∑
s=1

(δξ′s, ξ
′
k)H ḋs(t) = ‖ξ′k‖2L2(Ω;δ dx)ḋk(t),

b1(wm(t), vm(t), ζk) =

∫
Ω

[
m∑
s=1

cs(t)ζ
′
s

] m∑
j=1

dj(t)ξj

 ζk dx
+

1

2

∫
Ω

[
m∑
s=1

cs(t)ζs

] m∑
j=1

dj(t)ξ
′
j

 ζk dx
=

m∑
s,j=1

b1(ζs, ξj , ζk)cs(t)dj(t),

b1(wm(t), u∗(t), ζk) =

∫
Ω

[
m∑
s=1

cs(t)ζ
′
s

]
u∗(t)ζk dx

+
1

2

∫
Ω

[
m∑
s=1

cs(t)ζs

]
u∗x(t)ζk dx

=

m∑
s=1

b1(ζs, u
∗(t), ζk)cs(t)dj(t),

b2(vm(t), vm(t), ξk) =

m∑
s,j=1

(
ξsξ
′
j , ξk

)
H
ds(t)dj(t),

1

2
(r0 [vm(t)]x + η∗ [vm(t)]x , ζk)

H
=

1

2

m∑
s=1

(r0ξ
′
s + η∗ξ′s, ζk)H ds(t),

(µ(t) [wm(t)]x , ξk)
H

=

m∑
s=1

(µ(t)ζ ′s, ξk)H cs(t),

([vm(t)]x u
∗
x(t), ξk)

H
= u∗x(t)

m∑
s=1

(ξ′s, ξk)H ds(t).
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Taking these representations into account, we set

Cm(t) = [c1(t), . . . , cm(t)]
t
, C0

m = [α1, . . . , αm]
t
,

Dm(t) = [d1(t), . . . , dm(t)]
t
, D0

m = [β1, . . . , βm]
t
,

Fm(t) = [F1(t), . . . , Fm(t)]
t

with Fk(t) = (f(t), ξk)H − (u̇∗(t), ξk)H − b2(u∗(t), u∗(t), ξk)),

Rm(t) = [R1(t), . . . , Rm(t)]
t

with Rk(t) =
1

2
([r0 + η∗] [h(t)− g(t)] , ζk)H ,

A1,m =
[
a1
ij

]m
i,j=1

with a1
ij =

1

2
(r0ξ

′
i + η∗ξ′i, ζj)H ,

A2,m(t) =
[
a2
ij(t)

]m
i,j=1

with a2
ij(t) =

(
µ(t)ζ ′j , ξi

)
H
,

A3,m =
[
a3
ij

]m
i,j=1

with a3
ij =

(
ξ′j , ξi

)
H
,

Km = diag
{
‖ζ1‖2V0

, . . . , ‖ζm‖2V0

}
,

Ctm(t)BmCm(t) =

 Ctm(t)Bm,1Cm(t)
· · ·

Ctm(t)Bm,1Cm(t)

 ,
where Bm,k =

[
bkij
]m
i,j=1

with bkij = b1(ζi, ξj , ζk),

Dtm(t)B̂mDm(t) =

 Dtm(t)B̂m,1Dm(t)
· · ·

Dtm(t)B̂m,1Dm(t)

 ,
where B̂m,k =

[
b̂kij

]m
i,j=1

with b̂kij =
(
ξiξ
′
j , ξk

)
H
.

Then the system (5.3),(5.5),(5.6) can be represented as follows
Ċm(t) = −νK1,mCm(t)− A1,mDm(t)− Ctm(t)BmCm(t) + Rm(t),

Ḋm(t) = −u∗x(t)A3,mDm(t)− A2,m(t)Cm(t)− Dtm(t)B̂mDm(t) + Fm(t).

Cm(0) = C0
m,

Dm(0) = D0
m.

(5.9)

Since the sequence {ξk}k∈N is an orthogonal basis in Vδ with respect to the equivalent norm√
‖u‖2H + ‖ux‖2L2(Ω;δ dx), it follows that

diag
{
‖ξ1‖2H , . . . , ‖ξm‖2H

}
+ diag

{
‖ξ′1‖2L2(Ω;δ dx), . . . , ‖ξ

′
m‖2L2(Ω;δ dx)

}
is the identity matrix. Hence, for each m ∈ N we deal with the following Cauchy problem
for a linear-quadratic system of ordinary differential equations

d

dt

[
Cm(t)

Dm(t)

]
=

[
−νKm −A1,m

−A2,m(t) −u∗m(t)A3,m

] [
Cm(t)

Dm(t)

]
−
[
Ctm(t)BmCm(t)

Dtm(t)B̂mDm(t)

]
+

[
Rm(t)
Fm(t)

]
, t > 0, (5.10)[

Cm(0)
Dm(0)

]
=

[
C0
m

D0
m

]
. (5.11)
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In view of the initial assumptions, we have

Fm(·) ∈ L2(0, T ;Rm), u∗x(·) = g(·)− h(·) ∈ L∞(0, T ), A2,m(·) ∈ L∞(0, T ;Rm×m).

Hence, by the Carathéodory’s existence theorem, the Cauchy problem (5.10)–(5.11) admits
a unique solution [Cm(t),Dm(t)]

t
in C1([0, Tm];R2m) for an appropriate Tm > 0. As a result,

the representation (5.2) immediately leads us to the conclusion

wm ∈ H1(0, Tm;V0,m), vm ∈ H1(0, Tm;Vδ,m)

and, therefore, wm(·) ∈ W0(0, Tm) and vm(·) ∈ Wδ(0, Tm). It remains to note that the rest
functional properties that were indicated in (5.8), are the direct consequence of the Sobolev
embedding theorem (see Remark 2.3).

Remark 5.3. Since the nonlinearity in the right-hand side of the system (5.9) is locally
Lipschitz continuous with respect to the vector-function [Cm(t),Dm(t)]

t
, by the well-known

results of ODEs theory (see [19]) it follows that the unique solution to the Cauchy problem
(5.10)–(5.11) can be extended by continuity from [0, Tm] to any larger interval. Hence, we
can suppose that the intervals [0, Tm] can be chosen such that (Tm ≥ T for m = 1, 2, . . . ).

Our next intention is to show that the sequence {(wm(t), vm(t))}m∈N of Galerkin ap-
proximations possesses some compactness properties in an appropriate topology. To do so,
we begin with the following technical result.

Lemma 5.3. Under assumptions (3.1)–(3.2), there exists a constant C∗ > 0, indepen-

dent of m ∈ N, such that C∗ = C∗
(
‖h‖W 1,∞

0 (0,T ), ‖g‖W 1,∞
0 (0,T )

)
and

‖wm(t)‖2H + ‖vm(t)‖2H + ‖vm(t)‖2Vδ ≤ C
∗ for all m ∈ N and t ∈ [0, T ]. (5.12)

In particular, the following estimates

‖vm(t)‖2Vδ ≤ Φ−1
(
T + Φ

(
‖η0 − η∗‖2H + ‖u0‖2H + ‖u0‖2Vδ

))
∀ t ∈ [0, T ], (5.13)

‖wm(t)‖2H ≤ ‖η0 − η∗‖2H + C∗1T

+ C∗0 T Φ−1
(
T + Φ

(
‖η0 − η∗‖2H + ‖u0‖2H + ‖u0‖2Vδ

))
, ∀ t ∈ [0, T ] (5.14)

hold true, where 

C∗0 =
1

νδ0
[‖r0‖H + η∗]

2
,

C∗1 =
1

ν
[‖r0‖H + η∗]

2 (‖g‖L∞(0,T ) + ‖h‖L∞(0,T )

)2
,

C∗2 =

√
δ−1
0

[
‖f‖L∞(0,T ;H) +

3

2
Ĉ + Ĉ2

]
,

C∗3 = δ−1
0

(
Ĉ +

1

2ν
‖µ‖2L∞(0,T ;H)

)
,

Ĉ = ‖g‖W 1,∞
0 (0,T ) + ‖h‖W 1,∞

0 (0,T ),

(5.15)

and

Φ(q) :=

∫ q

ε

ds

C∗1 + C∗2
√
s+ (C∗0 + C∗3 ) s+ δ

−3/2
0 s

√
s
, (5.16)

for some positive value ε > 0.
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Proof. Multiplying the equations (5.5)-(5.6) by ck(t) and dk(t), respectively, and sum-
ming both equalities for k = 1, . . . ,m, we get (see also (5.7))

(ẇm(t), wm(t))H + a1(wm(t), wm(t)) +
1

2
([r0 + η∗] [vm(t)]x , wm(t))

H

+
1

2
([r0 + η∗] [g(t)− h(t)] , wm(t))H = 0, for a.e. t ∈ [0, T ], (5.17)

(v̇m(t), vm(t))H + a2(v̇m(t), vm(t)) + b2(vm(t), vm(t), vm(t)) + (µ(t) [wm(t)]x , vm(t))
H

+ ([vm(t)]x u
∗
x(t), vm(t))

H
= (f(t), vm(t))H − (u̇∗(t), vm(t))H

− b2(u∗(t), u∗(t), vm(t)), for a.e. t ∈ [0, T ]. (5.18)

We note that by (5.8) and Lemma 2.1, for a.e. t ∈ [0, T ], we have


(ẇm(t), wm(t))H =

1

2

d

dt
‖wm(t)‖2H ,

(v̇m(t), vm(t))H + a2(v̇m(t), vm(t)) =
1

2

d

dt

[
‖vm(t)‖2H + ‖vm(t)‖2Vδ

]
,

a1(wm(t), wm(t)) = ν‖wm(t)‖2V0
.

(5.19)

Moreover, the Holder’s, Young’s, and Agmon’s inequalities imply the following estimate for
the rest terms in (5.17)–(5.18):

1

2
(r0 [vm(t)]x + η∗ [vm(t)]x , wm(t))

H
≤ 1

2
‖r0 + η∗‖H‖[vm(t)]x‖H‖wm(t)‖L∞(Ω)

by (2.1), (2.4)

≤ [‖r0‖H + η∗]

√
δ−1
0 ‖vm(t)‖Vδ‖wm(t)‖V0

by (4.6)

≤ [‖r0‖H + η∗]

√
δ−1
0

[
ε

2
‖vm(t)‖2Vδ +

1

2ε
‖wm(t)‖2V0

]
{
ε= 2

ν [‖r0‖H+η∗]
√
δ−1
0

}
=

1

νδ0
[‖r0‖H + η∗]

2︸ ︷︷ ︸
C∗0

‖vm(t)‖2Vδ +
ν

4
‖wm(t)‖2V0

; (5.20)

1

2
([r0 + η∗] [g(t)− h(t)] , wm(t))H ≤

1

2
‖r0 + η∗‖H

(
‖g‖L∞(0,T ) + ‖h‖L∞(0,T )

)
‖wm(t)‖H

≤ [‖r0‖H + η∗]
(
‖g‖L∞(0,T ) + ‖h‖L∞(0,T )

)
‖wm(t)‖V0

by (4.6)

≤
(
‖g‖L∞(0,T ) + ‖h‖L∞(0,T )

) [ε
2

[‖r0‖H + η∗]
2

+
1

2ε
‖wm(t)‖2V0

]
{
ε =

2

ν

(
‖g‖L∞(0,T ) + ‖h‖L∞(0,T )

)}
=

1

ν
[‖r0‖H + η∗]

2 (‖g‖L∞(0,T ) + ‖h‖L∞(0,T )

)2︸ ︷︷ ︸
C∗1

+
ν

4
‖wm(t)‖2V0

; (5.21)
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(f(t), vm(t))H ≤ ‖f(t)‖H‖vm(t)‖H ≤
√
δ−1
0 ‖f‖L∞(0,T ;H)‖vm(t)‖Vδ ; (5.22)

(u̇∗(t), vm(t))H ≤ ‖u̇
∗(t)‖H‖vm(t)‖H ≤

3

2

√
δ−1
0

(
|ġ(t)|+ |ḣ(t)|

)
‖vm(t)‖Vδ

≤ 3

2

√
δ−1
0

(
‖g‖W 1,∞

0 (0,T ) + ‖h‖W 1,∞
0 (0,T )

)
︸ ︷︷ ︸

Ĉ

‖vm(t)‖Vδ ; (5.23)

b2(u∗(t), u∗(t), vm(t)) =

∫
Ω

u∗(t)u∗x(t)vm(t) dx ≤ (|g(t)|+ |h(t)|) ‖u∗x(t)‖H‖vm(t)‖H

≤
(
‖g‖W 1,∞

0 (0,T ) + ‖h‖W 1,∞
0 (0,T )

)2
√
δ−1
0 ‖vm(t)‖Vδ

= Ĉ2
√
δ−1
0 ‖vm(t)‖Vδ ; (5.24)

([vm(t)]x u
∗
x(t), vm(t))

H
≤ (|g(t)|+ |h(t)|) ‖vm(t)‖2V0

≤ (|g(t)|+ |h(t)|) δ−1
0 ‖vm(t)‖2Vδ

≤ δ−1
0 Ĉ‖vm(t)‖2Vδ ; (5.25)

b2(vm(t), vm(t), vm(t)) ≤
∫

Ω

v2
m(t)|[vm(t)]x| dx ≤ ‖vm(t)‖H‖[vm(t)]x‖H‖vm(t)‖L∞(Ω)

≤
√
δ−1
0 ‖vm(t)‖H‖[vm(t)]x‖H‖vm(t)‖Vδ

≤ δ−1
0 ‖vm(t)‖H‖vm(t)‖2Vδ ≤ δ

−3/2
0 ‖vm(t)‖3Vδ ; (5.26)(

µ(t) [wm(t)]x , vm(t)
)
H
≤ ‖µ(t)‖H‖[wm(t)]x‖H‖vm(t)‖L∞(Ω)

≤
√
δ−1
0 ‖µ‖L∞(0,T ;H)‖wm(t)‖V0

‖vm(t)‖Vδ

≤
√
δ−1
0 ‖µ‖L∞(0,T ;H)

[
ε

2
‖wm(t)‖2V0

+
1

2ε
‖vm(t)‖2Vδ

]{
ε= ν√

δ
−1
0 ‖µ‖L∞(0,T ;H)

}

≤ ν

2
‖wm(t)‖2V0

+
1

2ν
δ−1
0 ‖µ‖2L∞(0,T ;H)‖vm(t)‖2Vδ . (5.27)

Combining the estimates (5.20)–(5.27) together with the representations (5.19), we derive
from (5.17)–(5.18) the following inequalities

1

2

d

dt
‖wm(t)‖2H +

ν

2
‖wm(t)‖2V0

≤ C∗0‖vm(t)‖2Vδ + C∗1 , (5.28)

1

2

d

dt

[
‖vm(t)‖2H + ‖vm(t)‖2Vδ

]
≤
√
δ−1
0

[
‖f‖L∞(0,T ;H) +

3

2
Ĉ + Ĉ2

]
︸ ︷︷ ︸

C∗2

‖vm(t)‖Vδ

+ δ−1
0

(
Ĉ +

1

2ν
‖µ‖2L∞(0,T ;H)

)
︸ ︷︷ ︸

C∗3

‖vm(t)‖2Vδ + δ
−3/2
0 ‖vm(t)‖3Vδ +

ν

2
‖wm(t)‖2V0

. (5.29)

Then it follows from (5.28)–(5.29) that

d

dt

[
‖wm(t)‖2H + ‖vm(t)‖2H + ‖vm(t)‖2Vδ

]
≤ Ψ (‖vm(t)‖Vδ) , (5.30)
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where

Ψ(z) := C∗1 + C∗2z + (C∗0 + C∗3 ) z2 + δ
−3/2
0 z3.

Thus, we arrive at the differential inequalities

d

dt

[
‖wm(t)‖2H + ‖vm(t)‖2H + ‖vm(t)‖2Vδ

]
≤ Ψ (‖vm(t)‖Vδ) , (5.31)

d

dt
‖wm(t)‖2H ≤ C∗0‖vm(t)‖2Vδ + C∗1 , (5.32)

‖wm(0)‖2H + ‖vm(0)‖2H + ‖vm(0)‖2Vδ
by (5.3)

=

m∑
k=1

(
α2
k + β2

k

)
. (5.33)

By Parseval’s identity, we have the following monotonicity property

m∑
k=1

(
α2
k + β2

k

)
↗

∞∑
k=1

(
α2
k + β2

k

)
= ‖η0 − η∗‖2H + ‖u0‖2H + ‖u0‖2Vδ as m→∞.

Hence, the sequence
{
‖wm(0)‖2H + ‖vm(0)‖2H + ‖um(0)‖2Vδ

}
m∈N is bounded. Therefore, pass-

ing to the integral form of (5.31)–(5.33), we obtain

‖vm(t)‖2Vδ ≤ ‖η0 − η∗‖2H + ‖u0‖2H + ‖u0‖2Vδ +

∫ t

0

Ψ̂
(
‖vm(s)‖2Vδ

)
ds, t ∈ [0, T ], (5.34)

‖wm(t)‖2H ≤ ‖η0 − η∗‖2H + C∗1T + C∗0

∫ t

0

‖vm(s)‖2Vδ ds, t ∈ [0, T ] (5.35)

with

Ψ̂ (z) := C∗1 + C∗2
√
z + (C∗0 + C∗3 ) z + δ

−3/2
0 z

√
z. (5.36)

Putting

y(t) :=

∫ t

0

Ψ̂
(
‖vm(s)‖2Vδ

)
ds, t ∈ [0, T ],

we have y(0) = 0, and the relation (5.34) leads us to the inequality

ẏ(t) ≤ Ψ̂
(
‖η0 − η∗‖2H + ‖u0‖2H + ‖u0‖2Vδ + y(t)

)
, t ∈ [0, T ].

Then, by integration on [0, t], we get∫ y(t)

0

ds

Ψ̂
(
‖η0 − η∗‖2H + ‖u0‖2H + ‖u0‖2Vδ + s

) ≤ t, t ∈ [0, T ].

Setting Φ(q) :=
∫ q
ε

ds

Ψ̂(s)
, where ε > 0 is some small enough positive value, the previous

inequality can be rewritten as follows

Φ
(
y(t) + ‖η0 − η∗‖2H + ‖u0‖2H + ‖u0‖2Vδ

)
≤ t+ Φ

(
‖η0 − η∗‖2H + ‖u0‖2H + ‖u0‖2Vδ

)
,

that is (see (5.34) and (5.36))

‖vm(t)‖2Vδ ≤ Φ−1
(
t+ Φ

(
‖η0 − η∗‖2H + ‖u0‖2H + ‖u0‖2Vδ

))
∀ t ∈ [0, T ]. (5.37)
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It is worth to notice that the function [0,+∞) 3 t 7→ Ψ(t) ∈ [0,+∞) is monotonically
increasing. Hence, there exists a unique inverse function q 7→ Φ−1(q) with the same property.
As a result, (5.37) and (5.35) immediately imply the required estimates (5.13)–(5.14).

As an obvious consequence of Lemma 5.3 and inequality

ν

∫ T

0

‖wm(t)‖2V0
dt ≤ ‖wm(0)‖2H + C∗1T + C∗0

∫ T

0

‖vm(t)‖2Vδ dt

by (5.13)

≤ ‖wm(0)‖2H + C∗1T + C∗0 T Φ−1
(
T + Φ

(
‖η0 − η∗‖2H + ‖u0‖2H + ‖u0‖2Vδ

))
, (5.38)

coming from (5.28), we have the following result.
Corollary 5.4. The sequence of Galerkin approximations {(wm(t), vm(t))}m∈N is such

that

{wm(t)}m∈N is bounded in L∞(0, T ;H), (5.39)

{wm(t)}m∈N is bounded in L2(0, T ;V0), (5.40)

{vm(t)}m∈N is bounded in L∞(0, T ;Vδ), (5.41)

uniformly with respect to m.
We now proceed with an estimate of the norms of {(ẇm(t), v̇m(t))}m∈N in appropriate

spaces.
Lemma 5.5. There exist constants Ĉk (k = 1, . . . , 3) and D̂i (i = 1, . . . , 5) independent

of m such that the following estimates hold:

‖ẇm(t)‖V ∗0 ≤ Ĉ3 +
√

2 max
{
ν + 2Ĉ, Ĉ2

}√
Φm(t) +

Ĉ1

2
Φm(t), (5.42)

‖v̇m(t)‖H + ‖v̇m(t)‖Vδ ≤ D̂3 + D̂4 +
√

2
(
D̂1 + D̂2

)√
Φm(t) + D̂5Φ(t) (5.43)

for all m ∈ N and a.e. t ∈ [0, T ], where Ĉ is defined in (5.23) and

Φm(t) := ‖wm(t)‖2H + ‖vm(t)‖2H + ‖vm(t)‖2Vδ
by (5.12)

≤ C∗. (5.44)

Proof. Let z ∈ V0 and v ∈ Vδ be arbitrary elements, and let m ∈ N be a fixed positive
integer. Then we have a decomposition

z = w + w0, v = u+ u0,

where w ∈ V0,m, w0 ∈ V ⊥0,m, u ∈ Vδ,m, and u0 ∈ V ⊥δ,m. Hence,

‖w‖V0
≤ ‖z‖V0

and ‖u‖Vδ ≤ ‖v‖Vδ . (5.45)

Since (see Remark 5.2)

〈ẇm(t), z〉V ∗0 ;V0
= (ẇm(t), w)H and 〈v̇m(t), v〉V ∗δ ;Vδ

= (v̇m(t), u)H , (5.46)

it follows from (5.5)–(5.6) that the following equalities

(ẇm(t), z)H = −a1(wm(t), w)− b1(wm(t), vm(t), w)− b1(wm(t), u∗(t), w)

− 1

2
([r0 + η∗] [vm(t)]x , w)

H
− 1

2
([r0 + η∗] [g(t)− h(t)] , w)H , (5.47)

(v̇m(t), v)H + a2(v̇m(t), v) = −b2(vm(t), vm(t), u)− (µ(t) [wm(t)]x , u)
H

− ([vm(t)]x u
∗
x(t), u)

H
+ (f(t), u)H − (u̇∗(t), u)H − b2(u∗(t), u∗(t), u) (5.48)
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hold true for a.e. t ∈ [0, T ].

Then, by analogy with (4.7)–(4.10), we get

|a1(wm(t), w)| ≤ ν‖wm(t)‖V0
‖w‖V0

,

|b1(wm(t), vm(t), w)| ≤
(

1

2
‖[vm(t)]x‖H‖wm(t)‖L∞(Ω) + ‖[wm(t)]x‖H‖vm(t)‖L∞(Ω)

)
‖w‖H

by (2.1),(2.4),(2.3)

≤ 3

√
δ−1
0︸ ︷︷ ︸

Ĉ1

‖vm(t)‖Vδ‖wm(t)‖V0
‖w‖V0

,

|b1(wm(t), u∗(t), w)| ≤
(

1

2
‖[u∗(t)]x‖H‖wm(t)‖L∞(Ω) + ‖[wm(t)]x‖H‖u∗(t)‖L∞(Ω)

)
‖w‖H

by (3.12)

≤
(
‖g‖W 1,∞

0 (0,T ) + ‖h‖W 1,∞
0 (0,T )

)
︸ ︷︷ ︸

Ĉ

(‖wm(t)‖V0
+ ‖[wm(t)]x‖H) ‖w‖V0

= 2Ĉ‖wm(t)‖V0
‖w‖V0

,∣∣∣1
2

(r0 [um(t)]x + η∗ [um(t)]x , w)
H

∣∣∣ ≤ 1

2
‖r0‖H‖[vm(t)]x‖H‖w‖L∞(Ω) +

1

2
η∗‖[vm(t)]x‖H‖w‖H

≤
√
δ−1
0

(
‖r0‖H +

1

2
η∗
)

︸ ︷︷ ︸
Ĉ2

‖vm(t)‖Vδ‖w‖V0
,

∣∣∣1
2

([r0 + η∗] [g(t)− h(t)] , w)H

∣∣∣ ≤ 1

2
‖r0‖H‖g(t)− h(t)‖H‖w‖L∞(Ω) +

1

2
η∗‖g(t)− h(t)‖H‖w‖H

≤ Ĉ
(
‖r0‖H +

1

2
η∗
)

︸ ︷︷ ︸
Ĉ3

‖w‖V0
.

Hence, combining this estimates with the representation (5.47), we obtain

|(ẇm(t), z)H | ≤
[
Ĉ3 +

(
ν + 2Ĉ

)
‖wm(t)‖V0

+ Ĉ1‖vm(t)‖Vδ‖wm(t)‖V0
+ Ĉ2‖vm(t)‖Vδ

]
‖w‖V0

≤
[
Ĉ3 +

(
ν + 2Ĉ

)
‖wm(t)‖V0

+ Ĉ1‖vm(t)‖Vδ‖wm(t)‖V0
+ Ĉ2‖vm(t)‖Vδ

]
‖z‖V0

.

Then, by definition of the norm in V ∗0 , we may write

‖ẇm(t)‖V ∗0 ≤ Ĉ3 +
(
ν + 2Ĉ

)
‖wm(t)‖V0

+ Ĉ1‖vm(t)‖Vδ‖wm(t)‖V0
+ Ĉ2‖vm(t)‖Vδ

≤ Ĉ3 +
√

2 max
{
ν + 2Ĉ, Ĉ2

}√
Φm(t) +

Ĉ1

2
Φm(t)

by (5.12)

≤ C̃, for all m ∈ N and a.e. t ∈ [0, T ], (5.49)

where the constant C̃ does not depend on m.

Now we can proceed with the similar estimation for the equation (5.48). Using the
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Schwarz, Friedrich’s, and Young’ss inequalities, we infer∣∣(µ(t) [wm(t)]x , u)
H

∣∣ ≤ ‖µ‖L∞(0,T ;H)‖ [wm(t)]x ‖H‖u‖L∞(Ω)

≤ 2

√
δ−1
0 ‖µ‖L∞(0,T ;H)︸ ︷︷ ︸

D̂1

‖wm(t)‖V0
‖u‖Vδ ,

∣∣([vm(t)]x u
∗
x(t), u)

H

∣∣ ≤ Ĉ‖ [vm(t)]x ‖H‖u‖H ≤ δ
−1
0 Ĉ︸ ︷︷ ︸
D̂2

‖vm(t)‖Vδ‖u‖Vδ ,

∣∣ (f(t), u)H − (u̇∗(t), u)H
∣∣ ≤ ‖f‖L∞(0,T ;H)‖u‖H + ‖u̇∗(t)‖H‖u‖H

≤
√
δ−1
0

(
‖f‖L∞(0,T ;H) + ‖ḣ‖L∞(0,T ) + ‖ġ‖L∞(0,T )

)
︸ ︷︷ ︸

D̂3

‖u‖Vδ ,

and

|b2(vm(t), vm(t), u)| =
∣∣∣∣∫

Ω

u[vm(t)]xvm(t) dx

∣∣∣∣ ≤ ‖[vm(t)]x‖H‖u‖H‖vm(t)‖L∞(Ω)

≤ 2δ
−3/2
0︸ ︷︷ ︸
D̂5

‖vm(t)‖2Vδ‖u‖Vδ ,

|b2(u∗(t), u∗(t), u)| =
∣∣∣∣∫

Ω

uu∗x(t)u∗(t) dx

∣∣∣∣ ≤ ‖u∗x(t)‖H‖u‖H‖u∗(t)‖L∞(Ω)

≤
√
δ−1
0 Ĉ2︸ ︷︷ ︸
D̂4

‖u‖Vδ .

In view of these estimates, we deduce from (5.48)

(v̇m(t), v)H + a2(v̇m(t), v) = (v̇m(t), v)H + (v̇m(t), v)Vδ

≤
[
D̂1‖wm(t)‖V0 + D̂2‖vm(t)‖Vδ + D̂3 + D̂4 + D̂5‖vm(t)‖2Vδ

]
‖u‖Vδ

≤
[
D̂1‖wm(t)‖V0 + D̂2‖vm(t)‖Vδ + D̂3 + D̂4 + D̂5‖vm(t)‖2Vδ

]
‖v‖Vδ .

Hence,

‖v̇m(t)‖H + ‖v̇m(t)‖Vδ ≤ D̂1‖wm(t)‖V0
+ D̂2‖vm(t)‖Vδ + D̂3 + D̂4 + D̂5‖vm(t)‖2Vδ

≤ D̂3 + D̂4 +
√

2
(
D̂1 + D̂2

)√
Φm(t) + D̂5Φ(t)

by (5.12)

≤ D̃, for all m ∈ N and a.e. t ∈ [0, T ], (5.50)

where the constant D̃ does not depend on m. The proof is complete.
Remark 5.4. Lemma 5.5 shows that the sequence {ẇm(t)}m∈N is bounded in L∞(0, T ;V ∗0 )

while the sequence {v̇m(t)}m∈N is bounded in L∞(0, T ;Vδ). Combining this fact with Corol-
lary 5.4, we conclude that

{wm(t)}m∈N is bounded in L∞(0, T ;H) ∩W0(0, T ), (5.51)

{ẇm(t)}m∈N is bounded in L∞(0, T ;V ∗0 ), (5.52)

{vm(t)}m∈N is bounded in W 1,∞(0, T ;Vδ). (5.53)
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Hence, by Banach-Alaoglu compactness theorem, we can deduce that there exists a subse-
quence of the sequence of Galerkin approximations {(wm(t), vm(t))}m∈N, still denoted by the
same suffix m, such that, as m→∞ (see Lions [16, Theorem 5.1] and Simon [20]),

wm ⇀ w weakly in L2(0, T ;V0), (5.54)

wm
∗
⇀ w weakly-∗ in L∞(0, T ;H), (5.55)

ẇm ⇀ z weakly in L2(0, T ;V ∗0 ) and weakly-∗ in L∞(0, T ;V ∗0 ), (5.56)

vm → v strongly in Lp(0, T ;Vδ) for any p ∈ (1,∞) by (5.53), (5.57)

vm
∗
⇀ v weakly-∗ in L∞(0, T ;Vδ), (5.58)

v̇m ⇀ u weakly in L2(0, T ;Vδ) and weakly-∗ in L∞(0, T ;Vδ), (5.59)

where z = ẇ in the sense of D′(0, T ;V ∗0 ), and u = v̇ as elements of D′(0, T ;Vδ). Indeed, in
view of the definition of generalized derivative, we have∫ T

0

〈ẇm(t), ζ〉V ∗0 ;V0
ϕ(t) dt = −

∫ T

0

(wm(t), ζ)V0

∂ϕ

∂t
dt, ∀ ζ ∈ V0, ∀ϕ ∈ C∞0 (0, T ).

Then (5.54) implies that ẇm → ẇ in the sense of distributions D′(0, T ;V ∗0 ). Since, the limit
in D′(0, T ;V ∗0 ) is unique, in follows that z = ẇ. The similar arguments show that u = v̇ in
D′(0, T ;Vδ).

In order to proceed further, we need a couple of the following technical results.

Proposition 5.6. Let {(wm(t), vm(t))}m∈N be a sequence with properties (5.51)–(5.53)
and (5.54)–(5.59), and let u ∈ L2(0, T ;V0) be an arbitrary distribution. Then

lim
m→∞

∫ T

0

b1(wm(t), vm(t), u(t)) dt =

∫ T

0

b1(w(t), v(t), u(t)) dt. (5.60)

Proof. Following the definition of the trilinear form b1 (see (3.8)), we have∫ T

0

b1(wm(t), vm(t), u(t)) dt =

∫ T

0

∫
Ω

[
[wm(t)]xvm(t)u(t) +

1

2
wm(t)[vm(t)]xu(t)

]
dxdt

=

∫ T

0

∫
Ω

([wm(t)]x − [w(t)]x) v(t)u(t) dxdt+

∫ T

0

∫
Ω

[wm(t)]x (vm(t)− v(t))u(t) dxdt

+

∫ T

0

∫
Ω

[w(t)]xv(t)u(t) dxdt+
1

2

∫ T

0

∫
Ω

(wm(t)− w(t)) [v(t)]xu(t) dxdt

+
1

2

∫ T

0

∫
Ω

wm(t) ([vm(t)]x − [v(t)]x)u(t) dxdt+
1

2

∫ T

0

∫
Ω

w(t)[v(t)]xu(t) dxdt

= Jm1 + Jm2 +

∫ T

0

∫
Ω

[w(t)]xv(t)u(t) dxdt+ Jm3 + Jm4 +
1

2

∫ T

0

∫
Ω

w(t)[v(t)]xu(t) dxdt.

(5.61)

Since the inclusion v ∈ L∞(0, T ;Vδ) implies v ∈ L∞(Q), it follows that v(·)u(·) ∈ L2(0, T ;H).
Hence,

Jm1 → 0 as m→∞ by condition (5.54). (5.62)
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Besides, the estimate∫ T

0

‖[v(t)]x‖H‖u(t)‖H dt ≤ δ−1/2
0

∫ T

0

‖[v(t)]x‖Vδ‖u(t)‖H dt

≤ δ−1/2
0 ‖v‖L2(0,T ;Vδ)‖u‖L2(0,T ;H) ≤

√
δ−1
0 T ‖v‖L∞(0,T ;Vδ)‖u‖L2(0,T ;V0)

shows that [v(·)]xu(·) ∈ L1(0, T ;H). Therefore, from (5.55), we deduce that

Jm1 → 0 as m→∞ by condition (5.54). (5.63)

Further we notice that {[wm(·)]xu(·)}m∈N is a bounded sequence in L1(0, T ;H). Indeed,∫ T

0

‖[wm(t)]xu(t)‖H dt ≤ ‖[wm]x‖L2(0,T ;H)‖u‖L2(0,T ;H)

≤ ‖u‖L2(0,T ;V0)

[
sup
m∈N
‖wm‖L2(0,T ;V0)

]
by (5.51)

≤ C < +∞. (5.64)

Taking into account the characterization of the set W 1,∞(0, T ;Vδ) (see Evans [7, p.279]),
we have: {vm(·)}m∈N is a bounded sequence in the space of Lipschitz continuous functions
C0,1([0, T ];Vδ). Hence, by Arzelà–Ascoli theorem, we obtain

lim
m→∞

|Jm2 | ≤ lim
m→∞

∫ T

0

‖[wm(t)]xu(t)‖H ‖vm(t)− v(t)‖H dxdt

by (5.64)

≤ C lim
m→∞

‖vm − v‖C([0,T ];H) ≤ C lim
m→∞

‖vm − v‖C([0,T ];Vδ) = 0. (5.65)

It remains to study the asymptotic behaviour of the forth term Jm4 . To this end, we make
use of the following chain of estimates

2 |Jm4 | ≤
∫ T

0

‖wm(t)‖L∞(Ω) ‖[vm(t)]x − [v(t)]x‖H ‖u(t)‖H dt

by (2.5)

≤ CA

∫ T

0

‖wm(t)‖1/2H ‖wm(t)‖1/2V0
‖[vm(t)]x − [v(t)]x‖H ‖u(t)‖H dt

≤ CA sup
m∈N
‖wm‖1/2L∞(0,T ;H)︸ ︷︷ ︸

D

∫ T

0

‖wm(t)‖1/2V0
‖[vm(t)]x − [v(t)]x‖H ‖u(t)‖H dt

≤ D‖u‖L2(0,T ;H)

(∫ T

0

‖wm(t)‖V0 ‖[vm(t)]x − [v(t)]x‖2H dt

)1/2

≤ D‖u‖L2(0,T ;V0)

(
sup
m∈N
‖wm‖L2(0,T ;V0)

)1/2
(∫ T

0

‖[vm(t)]x − [v(t)]x‖4H dt

)1/4

.

(5.66)

Since sup
m∈N
‖wm‖L2(0,T ;V0)

by (5.54)
< +∞ and

∫ T

0

‖[vm(t)]x − [v(t)]x‖4H dt ≤ δ−2
0

∫ T

0

(∫
Ω

|[vm(t)]x − [v(t)]x|2 δ dx
)2

dt

≤ δ−2
0

∫ T

0

‖vm(t)− v(t)‖4Vδ dt = δ−2
0 ‖vm − v‖4L4(0,T ;Vδ)

by (5.57)→ 0 as m→∞,



24 P.I. Kogut, J.A. Maksimenkova

it follows from (5.66) that

Jm4 → 0 as m→∞. (5.67)

Thus, in view of the properties (5.62), (5.63), (5.65), and (5.67), the limit passage in (5.61)
as m→∞ leads to the desired relation (5.60). The proof is complete.

Proposition 5.7. Let {(wm(t), vm(t))}m∈N be a sequence with properties (5.51)–(5.53)
and (5.54)–(5.59), and let u ∈ L2(0, T ;Vδ) be an arbitrary distribution. Then

lim
m→∞

∫ T

0

b2(vm(t), vm(t), u(t)) dt =

∫ T

0

b2(v(t), v(t), u(t)) dt. (5.68)

Proof. Taking into account the definition of the trilinear form b2 (see (3.9) and (3.11)),
we have∫ T

0

b2(vm(t), vm(t), u(t)) dt =

∫ T

0

∫
Ω

vm(t)[vm(t)]xu(t) dxdt

=

∫ T

0

∫
Ω

(vm(t)− v(t)) [v(t)]xu(t) dxdt+

∫ T

0

∫
Ω

vm(t) ([vm(t)]x − [v(t)]x)u(t) dxdt

+

∫ T

0

∫
Ω

v(t)[v(t)]xu(t) dxdt = Dm
1 +Dm

2 +

∫ T

0

b2(v(t), v(t), u(t))dt. (5.69)

Then, in view of implication v ∈ L∞(0, T ;Vδ) ⇒ v ∈ L∞(Q), we obtain∣∣∣ ∫ T

0

∫
Ω

(vm(t)− v(t)) [v(t)]xu(t) dxdt
∣∣∣ ≤ ‖u‖L∞(Q)

∫ T

0

‖vm(t)− v(t)‖H‖u(t)‖H dt

≤ ‖v‖L∞(Q)‖u‖L2(0,T ;H)‖vm − v‖L2(0,T ;H)

≤ δ−1
0 ‖v‖L∞(Q)‖u‖L2(0,T ;Vδ)‖vm − v‖L2(0,T ;Vδ).

Hence,

lim
m→∞

Dm
1 = 0 by the strong convergence (5.57). (5.70)

As for the term Dm
2 , we have

|Dm
2 | =

∣∣∣ ∫ T

0

∫
Ω

vm(t) ([vm(t)]x − [v(t)]x)u(t) dxdt
∣∣∣

≤
∫ T

0

‖vm(t)‖L∞(Ω)‖[vm(t)]x − [v(t)]x‖H‖u(t)‖H dt

by (2.1), (2.4)

≤ 2

√
δ−1
0 ‖vm(t)‖L∞(0,T ;Vδ)

∫ T

0

‖[vm(t)]x − [v(t)]x‖H‖u(t)‖H dt

≤ 2

√
δ−1
0 sup

m∈N
‖vm(t)‖L∞(0,T ;Vδ)︸ ︷︷ ︸
C

‖[vm]x − [v]x‖L2(0,T ;H)‖u‖L2(0,T ;H)

≤ Cδ−1
0 ‖vm − v‖L2(0,T ;Vδ)‖u‖L2(0,T ;Vδ) −→ 0 as m→∞ by (5.57). (5.71)

Combining this result with (5.70), we can pass to the limit in (5.69). Thus, the equality
(5.69) follows.
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We are now in a position to prove the main result of this section.
Theorem 5.8. Assume (3.1)–(3.2) hold true. Let {(wm(t) + η∗, um(t) + u∗(t))}m∈N

be a sequence of Galerkin approximations to the corresponding weak solution of the initial-
boundary value problem (3.3)–(3.5). Then there exists a unique pair

(w, v) ∈ [L∞(0, T ;H) ∩W0(0, T )]×W 1,∞(0, T ;Vδ) with ẇ ∈ L∞(0, T ;V ∗0 )

such that (w, v) is a limit for the entire sequence {(wm(t), vm(t))}m∈N as m → ∞ in the
following sense

wm ⇀ w weakly in L2(0, T ;V0), (5.72)

wm
∗
⇀ w weakly-∗ in L∞(0, T ;H), (5.73)

ẇm ⇀ ẇ weakly in L2(0, T ;V ∗0 ) and weakly-∗ in L∞(0, T ;V ∗0 ), (5.74)

vm → v strongly in Lp(0, T ;Vδ) for any p ∈ (1,∞) by (5.53), (5.75)

vm
∗
⇀ v weakly-∗ in L∞(0, T ;Vδ), (5.76)

v̇m ⇀ v̇ weakly in L2(0, T ;Vδ) and weakly-∗ in L∞(0, T ;Vδ), (5.77)

and (w + η∗, v + u∗) is the weak solution to the initial-boundary value problem (3.3)–(3.5)
in the sense of Definition 5.1.

Proof. To begin with, we note that the sequence of Galerkin approximations is relative
compact with respect to the convergence (5.72)–(5.77) (see Remark 5.4 for the details). Let
{(wm(t), vm(t))}m∈N be its arbitrary subsequence with properties (5.72)–(5.77). Our first
intension is to use these properties in order to pass to the limit as m → ∞ in variational
problem (5.5)–(5.6). However, we have to keep in mind that the test functions in (5.5)–
(5.6) have to be chosen in V0,m × Vδ,m. To do so, we fix a couple of distributions (z, u) ∈
L2(0, T ;V0)× L2(0, T ;Vδ). Since

z(t) =

∞∑
k=1

ωk(t)ζk and u(t) =

∞∑
k=1

λk(t)ξk

and these series are convergent in V0 and Vδ, respectively, for a.e. t ∈ [0, T ], we set

zN (t) =

N∑
k=1

ωk(t)ζk and uN (t) =

N∑
k=1

λk(t)ξk

and keep N fixed, for the time being. If m > N , then we obviously have (zN , uN ) ∈
L2(0, T ;V0,m) × L2(0, T ;Vδ,m). Hence, multiplying equation (5.5) by ωk(t) and equation
(5.6) by λk(t) and summing for k = 1, . . . ,m, in view of the property (5.7), after integration
over (0, T ), we get∫ T

0

(ẇm(t), zN (t))H dt+

∫ T

0

a1(wm(t), zN (t)) dt+

∫ T

0

b1(wm(t), vm(t), zN (t)) dt

+

∫ T

0

b1(wm(t), u∗(t), zN (t)) dt

+
1

2

∫ T

0

(r0 [vm(t)]x + η∗ [vm(t)]x , zN (t))
H
dt

+
1

2

∫ T

0

([r0 + η∗] [g(t)− h(t)] , zN (t))H dt = 0, (5.78)
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0

(v̇m(t), uN (t))H dt+

∫ T

0

a2(v̇m(t), uN (t)) dt+

∫ T

0

b2(vm(t), vm(t), uN (t)) dt

+

∫ T

0

(µ(t) [wm(t)]x , uN (t))
H
dt+

∫ T

0

([vm(t)]x u
∗
x(t), uN (t))

H
dt

=

∫ T

0

(f(t), uN (t))H dt−
∫ T

0

(u̇∗(t), uN (t))H dt

−
∫ T

0

b2(u∗(t), u∗(t), uN (t)) dt. (5.79)

Due to the weak convergence of the sequences {(wm(t), vm(t))}m∈N and {(ẇm(t), v̇m(t))}m∈N
in their respective spaces (see (5.72)–(5.77) for the details), we can pass to the limit as
m→∞ in that relations. Since (see (5.7),(5.74), and (5.77))

(ẇm(t), zN (t))H = 〈ẇm(t), zN (t)〉V ∗0 ;V0

m→∞−→ 〈ẇ(t), zN (t)〉V ∗0 ;V0
,

(v̇m(t), uN (t))H + a2(v̇m(t), uN (t))

= 〈v̇m(t), uN (t)〉V ∗δ ;Vδ
+ a2(v̇m(t), uN (t))

m→∞−→ 〈v̇(t), uN (t)〉V ∗δ ;Vδ
+ a2(v̇(t), uN (t)),

it follows from Propositions 5.6 and 5.7 that the following equalities are valid∫ T

0

(ẇ(t), zN (t))H dt+

∫ T

0

a1(w(t), zN (t)) dt+

∫ T

0

b1(w(t), v(t), zN (t)) dt

+

∫ T

0

b1(w(t), u∗(t), zN (t)) dt+
1

2

∫ T

0

((r0 + η∗) [u(t)]x , zN (t))
H
dt

+
1

2

∫ T

0

([r0 + η∗] [g(t)− h(t)] , zN (t))H dt = 0, (5.80)∫ T

0

(v̇(t), uN (t))H dt+

∫ T

0

a2(v̇(t), uN (t)) dt+

∫ T

0

b2(v(t), v(t), uN (t)) dt

+

∫ T

0

(µ(t) [w(t)]x , uN (t))
H
dt+

∫ T

0

([v(t)]x u
∗
x(t), uN (t))

H
dt

=

∫ T

0

(f(t), uN (t))H dt−
∫ T

0

(u̇∗(t), uN (t))H dt

−
∫ T

0

b2(u∗(t), u∗(t), uN (t)) dt. (5.81)

Now, we can let N →∞ keeping in mind that zN → z and uN → u strongly in L2(0, T ;V0)
and L2(0, T ;Vδ), respectively. Taking into account that the result is valid for all (z, u) ∈
L2(0, T ;V0)× L2(0, T ;Vδ), we finally conclude the fulfilment of the following equalities

〈ẇ(t), z〉V ∗0 ;V0
+ a1(w(t), z) + b1(w(t), v(t), z) + b1(w(t), u∗(t), z)

+
1

2
((r0 + η∗) [v(t)]x , z)H +

1

2
([r0 + η∗] [g(t)− h(t)] , z)H = 0, (5.82)

〈v̇(t), u〉V ∗δ ;Vδ
+ a2(v̇m(t), u) + b2(v(t), v(t), u) + (µ(t) [w(t)]x , u)

H

+ ([v(t)]x u
∗
x(t), u)

H
= (f(t), u)H − (u̇∗(t), u)H − b2(u∗(t), u∗(t), u) (5.83)

for all z ∈ V0 and u ∈ Vδ, and almost each t ∈ [0, T ].
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It remains to show that (w(t), v(t)) satisfy the initial conditions w(0) = η0 − η∗ in H
and v(0) = u0 in Vδ. To begin with, we note that w ∈ C([0, T ];H) and v ∈ C([0, T ];Vδ) (see
Remark 2.3 and Lemma 2.1). Let us check the condition v(0) = u0 in Vδ (the similar assertion
for w(0) can be verified in the same way). With that in mind we fix u ∈ C1([0, T ];Vδ) with
u(T ) = 0 and apply the integration by parts in the following relations∫ T

0

(v̇m(t), u(t))H dt = − (Um, uN (0))H −
∫ T

0

(vm(t), u̇(t))H dt,∫ T

0

a2 (v̇m(t), u(t)) dt = − (Um, uN (0))L2(Ω,δ dx) −
∫ T

0

a2 (vm(t), u̇(t)) dt.

Then from (5.81) we find

−
∫ T

0

(vm(t), u̇N (t))H dt−
∫ T

0

a2(vm(t), u̇N (t)) dt+

∫ T

0

b2(vm(t), vm(t), uN (t)) dt

+

∫ T

0

(µ(t) [wm(t)]x , uN (t))
H
dt+

∫ T

0

([vm(t)]x u
∗
x(t), uN (t))

H
dt

=

∫ T

0

(f(t), uN (t))H dt−
∫ T

0

(u̇∗(t), uN (t))H dt

−
∫ T

0

b2(u∗(t), u∗(t), uN (t)) dt+ (Um, vN (0))H + (Um, vN (0))Vδ .

(5.84)

Letting the first m→∞ and then N →∞ and taking into account that Um → u0 strongly
in Vδ, we get from (5.84)

−
∫ T

0

(v(t), u̇(t))H dt−
∫ T

0

a2(v(t), u̇(t)) dt+

∫ T

0

b2(v(t), v(t), u(t)) dt

+

∫ T

0

(µ(t) [w(t)]x , u(t))
H
dt+

∫ T

0

([v(t)]x u
∗
x(t), u(t))

H
dt

=

∫ T

0

(f(t), u(t))H dt−
∫ T

0

(u̇∗(t), u(t))H dt

−
∫ T

0

b2(u∗(t), u∗(t), u(t)) dt+ (u0, u(0))H + (u0, u(0))Vδ . (5.85)

On the other hand, if we apply the integration by part formula to the relation (3.18) with
ψ = v(t), we obtain

−
∫ T

0

(v(t), u̇(t))H dt−
∫ T

0

a2(v(t), u̇(t)) dt+

∫ T

0

b2(v(t), v(t), u(t)) dt

+

∫ T

0

(µ(t) [w(t)]x , u(t))
H
dt+

∫ T

0

([v(t)]x u
∗
x(t), u(t))

H
dt

=

∫ T

0

(f(t), u(t))H dt−
∫ T

0

(u̇∗(t), u(t))H dt

−
∫ T

0

b2(u∗(t), u∗(t), u(t)) dt+ (v(0), u(0))H + (v(0), u(0))Vδ . (5.86)



28 P.I. Kogut, J.A. Maksimenkova

Substracting (5.86) from (5.85), we have

(v(0), u(0))H + (v(0), u(0))Vδ = (u0, u(0))H + (u0, u(0))Vδ .

By arbitrariness of u(0), we finally obtain v(0) is equal to u0 as elements of Hilbert space
Vδ. It is clear that the similar assertion is valid for the equality w(0) = η0 − η∗.

Thus, summing up the obtained results we can give the following conclusion: the pair
(w(t)+η∗, v(t)+u∗(t)) is a weak solution to the initial-boundary value problem (3.3)–(3.5) in
the sense of Definition 5.1. Since this conclusion is valid for any cluster pair of the sequence
of Galerkin approximations {(wm(t), vm(t))}m∈N and the system (3.3)–(3.5) admits a unique
weak solution (see Lemma 4.1), it follows that (w, v) is a limit pair for the entire sequence
{(wm(t), vm(t))}m∈N.

Remark 5.5. It remains to observe that estimates (5.13)–(5.14), (5.38) and (5.42)–
(5.43) are still valid for the weak solution to the initial-boundary value problem (3.3)–(3.5)
(w+ η∗, v+ u∗). With that in mind it is enough to take into account the strong convergence
(5.4), the properties (5.72)–(5.77), the lower semi-continuity of the norms ‖ · ‖L2(0,T ;Vδ),
‖ · ‖L2(0,T ;V0), and ‖ · ‖L2(0,T ;V ∗0 ) with respect to the weak convergence in the corresponding
spaces, and pass to the limit in (5.13)–(5.14), (5.38) and (5.42)–(5.43) as m→∞.

6. On Regularity of Weak Solutions to the Boussinesq System. In the context
of optimization problems closely related with the Boussinesq system, the regularity of the
solutions of the corresponding initial-boundary value problem (3.3)–(3.5) plays a crucial role.
Typically, the regularity of the solution improves with regularity of the original data. In
view of this, we begin with the following result.

Proposition 6.1. In addition to (3.2), let us assume that η0 ∈ V0 := H1
0 (Ω). Then

a unique weak solution (w + η∗, v + u∗) of the initial-boundary value problem (3.3)–(3.5) is
such that

w ∈ L∞(0, T ;H) ∩ L2(0, T ;H2(Ω) ∩ V0), ẇ ∈ L2(0, T ;H), v ∈W 1,∞(0, T ;Vδ) (6.1)

and there exists a constant D∗ > 0 depending on

Ω, T, ν, ‖h1‖L∞(0,T ), ‖g1‖L∞(0,T ), ‖f‖L∞(0,T ;H), ‖σ0‖L∞(0,T ), ‖σ1‖L∞(0,T ),

‖µ‖L∞(0,T ;H), ‖η0 − η∗‖H , ‖η0‖2V0
, ‖u0‖2Vδ , ‖r0‖H , δ0, and η∗

which satisfies the estimates

‖w‖2L2(0,T ;H2(Ω)) + ‖w‖2L∞(0,T ;H) + ‖ẇ‖2L2(0,T ;H) ≤ D∗, (6.2)

‖v‖2L∞(0,T ;Vδ)
+ ‖v̇‖2L∞(0,T ;Vδ)

≤ D∗. (6.3)

Proof. Multiplying the equation (5.5) by ċk(t) and summing for k = 1, . . . ,m, we get

‖ẇm(t)‖2H + a1(wm(t), ẇm(t)) + b1(wm(t), vm(t), ẇm(t)) + b1(wm(t), u∗(t), ẇm(t))

+
1

2
((r0 + η∗) [vm(t)]x , ẇm(t))

H
+ +

1

2
((r0 + η∗)u∗x(t), ẇm(t))H = 0, (6.4)

for a.e. t ∈ [0, T ]. We note that

a1(wm(t), ẇm(t)) = ν (wm(t), ẇm(t))V0
=
ν

2

d

dt
‖[wm(t)]x‖2H for a.e. t ∈ (0, T ).
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It was indicated in Remark 5.4 that, for each m ∈ N, we have vm ∈ W 1,∞(0, T ;Vδ).
However, because of the continuous embedding Vδ ↪→ C(Ω) and the fact that inclusion
vm ∈ W 1,∞(0, T ;Vδ) implies vm ∈ C0,1([0, T ];Vδ), we deduce: [vm]x ∈ L∞(Ω) for each
m ∈ N. Hence, there exists a constant CE > 0 such that

max
t∈[0,T ]

‖[vm(t)]x‖L∞(Ω) ≤ CE max
t∈[0,T ]

‖[vm(t)]x‖Vδ ≤ CE‖vm‖W 1,∞(0,T ;Vδ).

As a result, by Hölder’s and Young’s inequalities, we derive the following estimate:

1

2
(r0 [vm(t)]x + η∗ [vm(t)]x , ẇm(t))

H
≤ 1

2
‖r0 + η∗‖H‖[vm(t)]x‖L∞(Ω)‖ẇm(t)‖H

≤ CE
2

[‖r0‖H + η∗] ‖vm‖W 1,∞(0,T ;Vδ)‖ẇm(t)‖H
by (4.6)

≤ CE
2

[‖r0‖H + η∗]

[
ε

2
‖vm‖2W 1,∞(0,T ;Vδ)

+
1

2ε
‖ẇm(t)‖2H

]
{

letting ε =
3

2
CE [‖r0‖H + η∗]

}
=

3C2
E

8
[‖r0‖H + η∗]

2 ‖vm‖2W 1,∞(0,T ;Vδ)
+

1

6
‖ẇm(t)‖2H . (6.5)

The similar one holds true for the last term in (6.4)

1

2
(r0u

∗
x + η∗u∗x, ẇm(t))H ≤

1

2
‖r0 + η∗‖H‖u∗x‖L∞(Ω)‖ẇm(t)‖H

≤ 1

2
[‖r0‖H + η∗]

(
‖g‖W 1,∞

0 (0,T ) + ‖h‖W 1,∞
0 (0,T )

)
︸ ︷︷ ︸

Ĉ

‖ẇm(t)‖H

≤ 1

2
[‖r0‖H + η∗]

[
ε

2
Ĉ2 +

1

2ε
‖ẇm(t)‖2H

]
{ε= 3

2 [‖r0‖H+η∗]}

=
3Ĉ2

8
[‖r0‖H + η∗]

2
+

1

6
‖ẇm(t)‖2H . (6.6)

Since

b1(wm(t), vm(t), ẇm(t)) =

∫
Ω

[
[wm(t)]x vm(t)ẇm(t) +

1

2
wm(t)[vm(t)]xẇm(t)

]
dx,

it follows that∣∣b1(wm(t), vm(t), ẇm(t))
∣∣ ≤ ‖vm(t)‖L∞(Ω)‖[wm(t)]x‖H‖ẇm(t)‖H

+
1

2
‖wm(t)‖H‖[vm(t)]x‖L∞(Ω)‖ẇm(t)‖H

by (2.4), (2.3)

≤ 2

√
δ−1
0 ‖vm(t)‖Vδ‖wm(t)‖V0‖ẇm(t)‖H

+
1

2
CE‖wm(t)‖V0

‖[vm(t)]x‖Vδ‖ẇm(t)‖H ≤
[
2

√
δ−1
0 +

1

2
CE

]
︸ ︷︷ ︸

C̃1

‖vm‖W 1,∞(0,T ;Vδ)

×
[
ε

2
‖wm(t)‖2V0

+
1

2ε
‖ẇm(t)‖2H

]
ε=3C̃1‖vm‖W1,∞(0,T ;Vδ)

≤ 3C̃2
1

2
‖vm‖2W 1,∞(0,T ;Vδ)

‖wm(t)‖2V0
+

1

6
‖ẇm(t)‖2H . (6.7)
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From this inequality and (6.4)–(6.6), we infer

ν
d

dt
‖[wm(t)]x‖2H + ‖ẇm(t)‖2H ≤

3C2
E

4
[‖r0‖H + η∗]

2︸ ︷︷ ︸
C̃2

‖vm‖2W 1,∞(0,T ;Vδ)

+
3Ĉ2

4
[‖r0‖H + η∗]

2︸ ︷︷ ︸
C̃3

+3C̃2
1‖vm‖2W 1,∞(0,T ;Vδ)

‖wm(t)‖2V0
for a.e. t ∈ (0, T ).

Therefore, an integration over (0, t) yields

ν‖wm(t)‖2V0
+

∫ t

0

‖ẇm(s)‖2H ds = ν‖[wm(t)]x‖2H +

∫ t

0

‖ẇm(s)‖2H ds

≤ TC̃2‖vm‖2W 1,∞(0,T ;Vδ)
+ 3C̃2

1‖vm‖2W 1,∞(0,T ;Vδ)
‖wm‖2L2(0,T ;V0) + ν‖η0‖2V0

+ C̃3T

≤ TC̃2

[
sup
m∈N
‖vm‖W 1,∞(0,T ;Vδ)

]2

+ ν‖η0‖2V0
+ C̃3T

+ 3C̃2
1

[
sup
m∈N
‖vm‖W 1,∞(0,T ;Vδ)

]2 [
sup
m∈N
‖wm‖L2(0,T ;V0)

]2
by (5.51)–(5.53)

< +∞. (6.8)

As follows from this estimate, the sequences {wm(·)}m∈N and {ẇm(·)}m∈N are bounded in
L∞(0, T ;V0) and L2(0, T ;H), respectively. Hence, up to a subsequence, we can suppose that
there exist appropriate subsequences (still denoted by the suffix m) such that (see (5.54),
(5.56), and Remark 5.4)

wm
∗
⇀ w in L∞(0, T ;V0) and ẇm ⇀ ẇ in L2(0, T ;H) as m→∞. (6.9)

As a result, we can pass to the limit in (6.8) as m → ∞ along a chosen subsequence and
deduce by the weak lower semi-continuity of the norms in L∞(0, T ;V0) and L2(0, T ;H) that
the same estimate holds for the limit element w. Hence,

w ∈ L∞(0, T ;V0) and ẇ ∈ L2(0, T ;H). (6.10)

Moreover, in the similar spirit to the estimation like (6.7), it can be shown that(
wx(t)v(t) +

1

2
w(t)vx(t)

)
∈ H for a.e. t ∈ [0, T ]. (6.11)

Indeed,∥∥wx(t)v(t)+
1

2
w(t)vx(t)

∥∥
H
≤ ‖wx(t)v(t)‖H +

1

2
‖w(t)vx(t)‖H

≤ ‖wx(t)‖H‖v(t)‖L∞(Ω) +
1

2
‖w(t)‖L∞(Ω)‖vx(t)‖H

by (2.4)

≤ 2

√
δ−1
0 ‖w(t)‖V0

‖v(t)‖Vδ + ‖w(t)‖V0
‖vx(t)‖H

≤ 3

√
δ−1
0︸ ︷︷ ︸

2C

‖w(t)‖V0‖v(t)‖Vδ

≤ C
[
‖w(t)‖2V0

+ ‖v(t)‖2Vδ
] by (5.51)–(5.53)

< +∞ a.e. t([0,T]. (6.12)
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Taking this fact into account and combining it with property (6.10), we can rewrite the
equation in (3.17) in the form

ν
(
wx(t), ϕx

)
H

=−
(
ẇ(t) + wx(t) (v(t) + u∗(t)) +

1

2
w(t) (vx(t) + u∗x(t)) , ϕ

)
H

− 1

2

(
[(r0 + η∗) (vx(t) + u∗x(t))] , ϕ

)
H

a.e. t ∈ [0, T ] for all ϕ ∈ V0.

Then, the regularity theory for elliptic equations (see [7]) implies that w(t) ∈ H2(Ω) for
a.e. t ∈ [0, T ] and

‖w(t)‖2H2(Ω) ≤ C(ν,Ω)
[
‖η0‖2V0

+ ‖ẇ(t)‖2H + ‖wx(t) (v(t) + u∗(t)) ‖2H

+ ‖w(t) (vx(t) + u∗x(t)) ‖2H + ‖(r0 + η∗) (vx(t) + u∗x(t)) ‖2H
]

a.e. t ∈ [0, T ].

Integrating this relation over [0, T ] and using (6.5), (6.8), and (6.12), we see that

‖(r0 + η∗) (vx(t) + u∗x(t)) ‖2L2(0,T ;H)

by (6.5)

≤ 2C2
E [‖r0‖H + η∗]

2
(
‖u‖2W 1,∞(0,T ;Vδ)

+ Ĉ2T
)
,

‖w (vx(t) + u∗x(t)) ‖2L2(0,T ;H)

by (6.12)

≤ 2δ−1
0

∫ T

0

‖w(t)‖2V0

(
‖v(t)‖2Vδ + Ĉ2‖δ‖L1(Ω)

)
dt

≤2δ−1
0

(
‖v‖2W 1,∞(0,T ;Vδ)

+ Ĉ2‖δ‖L1(Ω)

)
‖w‖2L2(0,T ;V0),

‖wx (v(t) + u∗(t)) ‖2L2(0,T ;H)

by (6.12)

≤ 4δ−1
0

∫ T

0

‖w(t)‖2V0

(
‖v(t)‖2Vδ + Ĉ2‖δ‖L1(Ω)

)
dt

≤ 4δ−1
0

(
‖v‖2W 1,∞(0,T ;Vδ)

+ Ĉ2‖δ‖L1(Ω)

)
‖w‖2L2(0,T ;V0),

‖ẇ‖2L2(0,T ;H)

by (6.8)

≤ TC̃2‖v‖2W 1,∞(0,T ;Vδ)
+ ν‖η0‖2V0

+ C̃3T

+ 3C̃2
1‖v‖2W 1,∞(0,T ;Vδ)

‖w‖2L2(0,T ;V0),

where Ĉ is given by (5.23). This leads us to the conclusion: there exists a constant C∗ =
C∗(ν,Ω, T, δ0) > 0 independent of w and u such that the following estimate

‖w‖2L2(0,T ;H2(Ω)) ≤ C∗
[
‖η0‖2V0

+ (η∗)
2

+
(

1 + ‖w‖2L2(0,T ;V0)

)
‖v‖2W 1,∞(0,T ;Vδ)

+ ‖g‖2
W 1,∞

0 (0,T )
+ ‖h‖2

W 1,∞
0 (0,T )

]
(6.13)

holds true and, therefore, w ∈ L2(0, T ;H2(Ω)) by (6.13) and Theorem 5.8. Thus, (6.2) is a
direct consequence of (6.13) and estimates (5.13)–(5.14), (5.38) and (5.42)–(5.43) which are
the same for the functions w and u as it is indicated in Remark 5.5.

To end the proof, it remains to notice that the conclusion given above is valid for
any cluster pair of the sequence of Galerkin approximations {(wm(t), um(t))}m∈N. Since
the system (3.3)–(3.5) admits a unique weak solution (see Lemma 4.1), it follows that the
convergence (6.9) takes a place for the entire sequences {wm(·)}m∈N and {ẇm(·)}m∈N.
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