ON REGULARITY OF WEAK SOLUTIONS TO ONE CLASS OF
INITIAL-BOUNDARY VALUE PROBLEM WITH
PSEUDO-DIFFERENTIAL OPERATORS
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Abstract. We discuss solvability and some extra regularity properties for the weak solutions to one
class of the initial-boundary value problem arising in the study of the dynamics of an arterial system.
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1. Introduction. It is well known that the cardiovascular system transports oxygen
and nutrients to all the tissues of the body, from where it removes carbon dioxide and other
harmful waste products of cell metabolism. From a physical point of view, the system con-
sists of a pump that propels a viscous liquid (the blood) through a network of flexible tubes.
The heart provides energy to move blood through the circulatory system and is one key com-
ponent in the complex control mechanism of maintaining pressure in the vascular system
[18]. The aorta is the main artery originating from the left ventricle and then bifurcates to
other arteries, and is identified by several segments (ascending, thoracic, abdominal). There
are several features of the aorta that have an effect on the blood flow, such as the tapering
of the aorta or the fact that ascending aorta is arched (curved). Still, the functionality of
the aorta, considered as a single segment, is worth exploring from a modeling perspective,
in particular in relationship to the presence of the aortic valve.

There has been extensive literature describing the dynamics of the vascular network
coupled with a heart model (e.g. [8], [9], [10], [11], [17], [21]), the majority focusing on
either a detailed description of the four chambers of the heart or on the spatial dynamics in
the aorta, but not on both. In fact, there seem to be no studies addressing the heart rate
variability based on the detailed spatial description of the pressure and flow patterns in the
aorta.

Taking into account the elasticity of the aorta, considered as a single vessel, together
with an aortic valve model at the inflow and a peripheral resistance model at the outflow, we
can capture through simulation the dynamics of the pressure and flow in the aorta as well
as the heart rate variability. In view of this, we make use of the standard viscous hyperbolic
system (see [2], [15], [21]) which models cross-section area S(x,t) and average velocity u(z,t)
in the spatial domain:
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where (t,z) € Q@ = (0,T) x (0,L), f = f(z,t) is a friction force, usually taken to be
f = —22uwu/S, p is the fluid viscosity, P(z,t) is the hydrodynamic pressure, L is the
length of an arterial segment, and T' = Tp,y5. = 60/(HartRate) is the duration of an entire
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heartbeat. Here we include the inertial effects of the wall motion, described by the wall
displacement n = n(x, t):

1 S—8
n=r—ro=ﬁ(\/§—\/5>o)—2ﬂ~ (1.3)

The fluid structure interaction is modeled using inertial forces, which gives the pressure law
(see [3], [8])

6] 0%n B %S
P=P.,+ 5 wh—— = Poys + — (/'S — /S, -, 1.4
t—&-r%n—kp 92 t+SO( 0)+m8t2 (1.4)
where r(x,t) is the radius, ro = r(x,0), Sg = S(z,0), Peyt is the external pressure, 8 =
1_—%72}1, o is the Poisson ratio (usually taken to be 0% = %), E is Young modulus, h is the
wall thickness, m = %, Pw is the density of the wall.
This leads to the following Boussinesq system (for the details we refer to [4]):

1
Nt + Nz + 5(77 + TO)UZL’ =0,

9L poh (1.5)
Ut + Uy + —5 N + =Nt = [
PTo P
where p is the blood density. Considering the relation n; = —%roum, we get the system:
1
N + Nyu + 5(77 +ro)uy =0,
1.6)
2Eh  puhro (1.
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or, rearranging terms in wu,

1
Nt + Nz + §(n + TO)U/I =0,

1.7)
 puhig 1, 5 | 2Bh (
(u um)t+2(u )x+7prg e = [.

It remains to furnish the system (1.7) by corresponding initial and boundary conditions.

Since the solvability of the corresponding initial-boundary value problem is not clear in
the case of non-homogeneous Dirichlet boundary conditions, the aim of this paper is consider
a relaxed statement of this problem. Namely, following the method of vanishing viscosity,
we suppose that v1,, is small enough, and as a result, instead of (1.7), we can deal with
the nonlinear problem of Sobolev type.

2. Preliminaries. Let T' > 0 be a given value. Let also @ = (0,1), @ = (0,T) x Q,
and ¥ = (0,7) x 0. Let § : R — R be a locally integrable function on R such that
§(x) > 6o > 0 for a.e. x € Q. We will use the standard notion L?(2,d dx) for the set of
measurable functions v on € such that

1/2
llullz2(0,5 dz) = (/ uzddw) < +o00.
Q



On Regularity of Weak Solutions 3
We set H = L?(Q), Vo = H}(Q), and identify the Hilbert space H with its dual H*. On H

we use the common natural inner product (-,-) g, and endow the Hilbert space V; with the
inner product

(. V)vy, = (¢, ¥y forall ¢,9 eV,

We also make use of the weighted Sobolev space Vs as the set of functions u € Vj for which

the norm
1/2
lulls = (/ [u2 + 5(u')2] dx)
Q

is finite. Note that due to the estimate
fulfy = [ o <65t [ Sl < agt [t s do = 6l )

the space Vs is complete with respect to the norm || - ||v;.

We recall that the dual space of the weighted Sobolev space Vs is equivalent to V" =
W=12(Q, 67 dx) (for more details see [6]).

REMARK 2.1. In what follows, we make use of the following result: if there exists a
value v € [1,+00) such that =% € LY(2), then the expression (see [6, pp.46]):

o = | [ (u/)zadaz}m (2.2

can be considered as a norm on Vs and it is equivalent to the norm || - ||s. Moreover, in this
case the embedding Vs — L*(Q) is compact. Since

15 ey = /Q 67 dz < 857110 < +o0,

it follows that v = 1 satisfies the inclusion v € [1,400). -
Recall that Vp and, hence, Vs are continuously embedded into C(f2), see [1, 14] for
instance. Moreover, in view of Friedrich’s inequality

lulle < lluella = llullv, VueVy (2.3)

and the obvious relation, for any z,y € Q, y > =z,

y 2
W (y) = <u<x> - / ' (s) ds) < (u(@) + VT =T ' |)? < 263(z) + 2|13,
we have
P(y) = / W2 (y) de < 2 (Jul% + []13)
=2 (Jul% + JulZ,) = 4llul?,, Vyeo
Therefore,

llull L~y < 2[ully, Yue V. (2.4)



4 P.I. Kogut, J.A. Maksimenkova

We also recall the Agmon’s inequality (see [22, p.52]): there exists a constant Cy > 0
such that

1/2 1/2
lull e 0y < Callullylulyl® Vu e V. (2.5)

REMARK 2.2. Since §,6~% € LY(Q), it follows that Vs is a uniformly convex separable
Banach space [14]. Moreover, in view of the estimate (2.1), the embedding Vs — H is
continuous and dense. Hence, H = H* is densely and continuous embedded in V', and,
therefore, Vs — H — V' is a Hilbert triplet (see [12] for the details).

By L?(0,T;V,) we denote the space of (equivalence classes) of measurable abstract
functions w : [0, 7] — V, such that

T 1/2
[ullz2(0,1;v5) = (/ [u(®)II3, dtll) < +o0.
0

By analogy we can define the spaces L2(0,T; Vs), L>(0,T; H), L>=(0,T; Vs), and C([0, T); H)
(for the details, we refer to [5]). In what follows, when ¢ is fixed, the expression u(t) stands
for the function u(t,-) considered as a function in  with values into a suitable functional
space. When we adopt this convention, we write u(t) instead of u(t, ) and 4 instead of wu;
for the weak derivative of u in the sense of distribution

T T
|00 @) 00 de = = [0l @O0}y, dt VoV,
0 0

where (-, ->V0*_VO denotes the pairing between V) and V. Here, Vi = H~1(Q) is the dual
space to Vj.
We also make use of the Hilbert spaces

Wo(0,T) = {u e L*(0,T;Vy) : @€ L*(0,T;V{)}
and
W5(0,T) = {u € L*(0,T;V;5) : we L*(0,T;Vy)},

supplied with their common inner product, see [5, p.473], for instance.

REMARK 2.3. The following result is fundamental (see [5]): Let (Vo, H, Vy") be a Hilbert
triplet, Vo — H < Vi, with Vi separable, and let uw € L*(0,T;Vy) and © € L*(0,T;Vy).
Then

e u € C([0,T]; H) and there exists Cg > 0 such that

max [u(t)|a < Ck [|ull20,1;v) + ||7:‘||L2(O,T;VO*)] ; (2.6)

1<t<T

o if v € L%(0,T;Vy) and © € L*(0,T; V), then the following integration by parts
formula holds:

[ [0 00D + @ 50| = (@008~ (0l 05D (27)

for all s,t € 10,T7.
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Moreover, as immediately follows from Remark 2.2, the similar assertion is valid for the
Hilbert triplet Vs — H — V5.
In what follows, we make use of the following technical result (see (2.7) for comparison)
LEMMA 2.1. Let u € W5(0,T) be a given distribution and let as : Vs x Vs — R be the
bilinear form which is defined as follows

as(u,v) = /Q(Su’v' dr, Vu,v € V. (2.8)

Then
2 [ ({0, vy g + 0 (a0),u(n)] (29)
= (@)l + IR, ~ ()~ w3, foralls,te0.7].  (210)

Proof. We set

0, otherwise

u(t), tel0,T],
o { (), teo,T]
and regularize it by the convolution in ¢, i.e. we consider
~ 1 [t
ue =Ukpe, where pe(t)=—p| ), p€D+(R), [ p(t)dt=1.
R

As a result, we obtain a sequence {u.} ., with the properties

ue € C([0,T]; V5), Ve >0,

u. — u strongly in L? (0,T;Vs) ase — 0, (2.11)

U = strongly in L? (0,7T;Vs), ase — 0.

It is easy to see that for each £ > 0 the following equalities

d

= e, ue(0) 5 + a5 (e (0), ue(®) | = 2 (e (8), e (1) + 205 (i 0), we(t), - (2:12)

llue ()11 + e (I

(e (), ue(t) g = (e (t), ue(t)) vy,

hold true. Moreover, it is worth to note that by properties (2.11) we have:

lue ()17 — llu@®),
(e (t), ue(t) gy — (a(t), u(t)) g »
as (e (t), us(t)) = a5 (u(t), u(t))

strongly in L}, .(0,T) as ¢ — 0. Taking this fact into account, we can pass to the limit in
(2.12) (in the sense of distribution D’(0,T')) as € — 0. As a result, we arrive at the relation

% [(w(®), u(t)) g + as (u(t), u(t)] = 2 (a(t), u(t)y- v, + 205 (@(t),u(t))  in D'(0,T).
(2.13)
Since |[u(-)||3 € L*(0,T), as (u(-),u(-)) € L*(0,T), and (u(~),u(~)>V;;V5 € LY(0,T), after

integration of (2.13), we arrive at the desired equality (2.9). O
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3. Setting of the Dirichlet Initial-Boundary Value Problem. Let v > 0 be a
viscosity parameter, and let
f € L¥(0,T: L3(Q)), pe L¥(0,T:L3(Q)), g € Wy™(0,T), he Wy™(0,T),  (3.1)
ug € Vs, mo € L(Q), ro € L*(Q), § € L(Q) (3.2)
are given distributions, where f stands for a fixed forcing term, uy and 7 are given initial
states, and J is a singular (probably locally unbounded) weight function such that §(z) >
dp > 0 for a.e. x € Q.

The Dirichlet initial-boundary value problem we consider in this paper can be repre-
sented in the form of the following viscous Boussinesq system:

1 1 .
Nt + Ne + —NUg + ZToUy — VNge = 0 mn Q,

202 (3.3)
[u— (5ur)x]t + By (ug)” +pme = f inQ,

with the initial
n(0,:) =mn u(0,-) =ug inQ, (3.4)
and boundary conditions
n(,0) =n(, 1) =n" i (0,T),
{ u(-,0) =g(), wu(,1)=h() in0,T)

In order to give a precise description of the weak solutions to this problem, we define
the following bilinear and trilinear forms

(3.5)

a1(p, ) = V/Qw’w’ dz Ve,v €V, (3.6)
z(so,w)=/95@'w’dx Ve, € Vs, (3.7)
bi(e, ¥, 8) =/Q [@’Wﬂr ;W%} dz Y, ¢ €V, (3.8)
b0 = 3 [ [00) 0+ 90/6] do Voo € Vi, (3.9

Since Vj is continuously embedded into C(€), it easily follows from (3.6)—(3.9) that each of
these forms are continuous. Indeed, let us consider the form b1 (¢, v, ¢) for instance. We
have

1
i) < 1ol | [ I#tvldo+ 3 [ follef]as]

by (2.4) ) 1 , by (2.3)
< 2ellve e llalivlla + Slellalvla] < 3lelvlellv 1¢lv,-

Moreover, direct calculations show that

b1(p,1,0) =0 forall ¢ € Vp and ¢ € Vg, (3.10)

ba(0s 0, &) = / oddde for all o, € Vp. (3.11)
Q
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DEFINITION 3.1. We say that, for given g € W, °°(0,T) and h € W,>°(0,T), a couple
of functions (n(t),u(t)) is a weak solution to the initial-boundary value problem (3.3)—(3.5)

if

t), u(t) =g(t) = [h(t) — g()] =, (3.12)
€ , () € Ws(0,7), (3.13)
(w(0),x)g = (mo—n",x)y forall x € H, (3.14)
(w(0), X)y, = (w0, X)y, forall x € Vs, (3.15)

(w(t), 90>V0*;Vo + a1 (w(t), ) + bi(w(t), v(t), v) + by (w(t),u”(t), @) (3.16)
45 (ot 0] ua0), @) + 5 (o +0°) o0) —h(0)) @) =0, (317)
(0001, ) v, + 20, ) + Baf0(0),0(0),36) F (o030 + (0 (0), )
= (), 8)g — (), — oo (0) (1), ) (3.18)

for all o € Vy and ¢ € V5 and a.e. t € [0,T).

REMARK 3.1. Let us mention that if we multiply the left- and right-hand sides of
equations (3.17)—(3.18) by function x € L*(0,T) and integrate the result over the interval
(0,T), all integrals are finite. Moreover, closely following the arguments of Korpusov and
Sveshnikov (see [13]), it can be shown that the weak solution to (3.3)—(3.5) in the sense
of Definition 8.1 is equivalent to the following one: (n(t),u(t)) is a weak solution to the
initial-boundary value problem (3.3)—(3.5) if the conditions (3.12)-(3.15) hold true and

T
/0 (AL (w(®) u(t)), o) ey, dE =0, Yip() € L2(0,T3 Vp), (3.19)
[ (Aatalt). e, 60 de =0, o) € HO.TVR), (3:20)
where
A1) = 2o = vt a0+ %)+ S+ oa F0) + ol ), (321)

) 1 . 9 . 1. .
Ag(w,u) = 5 (v — (0vs),) + 3 (v?) |+ veu) + pw, — f + 7Y +5 (w?),. (3.22)

4. On Uniqueness of Weak Solutions to the Viscous Boussinesq System. Let
(' (1), u' (1)) = (w'(t) + 7", 0" () +u* (1)) € Wo(0,T) +1*] x [W5(0,T) +u*(t)]

(i = 1,2) be two weak solutions to the initial-boundary value problem (3.3)—(3.5) for a given
boundary influences g € W,">°(0,T) and h € Wy*°(0,T). We set

n(t) =n'(t) = n*(t), w(t) = w'(t) —w?(t), u(t) = u' (t) = w?(t), v(t) = v'(t) = v*(t).
Since
bl(wlv Ula ¢) - bl(w2’ U27 ¢) = bl(w7 vlv (b) + bl(w27 v, ¢)a

o', 01, ) — ba(v?, 02, ) = / [0 0t + v02¢] da,
Q
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it follows that the distributions w(-) and v(-) satisfy the following system

(W(1), @)vis v + ar(w(t), ) + br(w(t), v (), 9) + ba(w? (1), v(t), @) + by (w(t), u* (¢), ¥)

+ % ([ro +n"ve(t), )y =0, Ve e€Vy and ae. t €[0,T], (4.1)
(0(), P)vyvs + aa(0(1), ) + ; [0 (t)va ()9 + v()v3 (8)¢] dz + (u(t)wa(t), ) 4
+ (v (t)uy, )y =0, Vi €Vs and ae. te€[0,7], (4.2)

w(0) =0 in H and v(0) =0 in V;. (4.3)

Due to Remark 3.1, we can choose ¢ = w(t) and ¢ = v(¢) in relations (4.1)—(4.2). Then,
upon this choosing, and Lemma 2.1 (see also Remark 2.3), we have

by (w(t), v (t),w(t)) ~ =0,
bi(w(t), v (t),w(t)) ~ = 0,

by (w2 (t), v(t), w(t)) = /Q {(uﬂ(t))zv(t)w(t)—i—;wQ(t)vw(t)w(t)} do
1 2
= —/Q |:2’U1;(t)w(t) + v(t)wz(t)} w”(t) dx

and, therefore, relations (4.1)-(4.2) lead us to the equalities

3 30O+ @I, = [ |G + o) ) ds

+ % /Q [ro + n*] v (H)w(t)dx =0, for ae. t €[0,T], (4.4)
35 (10O + [ 6@ da] + [ [o100a(0) + oe20) o) d

+ /Q L) wa ($)o(t) dz + /Q va(0 (Oo(t) de =0,  for ae. € [0,T].  (4.5)

For our further analysis we make use of the Young’s and Gronwall’s inequalities.
e (Young’s Inequality) For all a,b,e > 0 and for all p € (1,4+00), we have

eaP b
ab < —

=7, Jrqu/p» with ¢ =p/(p —1); (4.6)

e (Gronwall’s Inequality) Let ¢ be a positive constant. Suppose that ¢ € L*(0,T)
and ¢(t) is non-negative for a.e. ¢t € [0,T]. If ¢ € C(]0,T]) satisfies the inequality

P(t) < c—l—/o w(s)(s)ds for all t € [0,T],

then we have

P(t) < cexp (/Otga(s) ds) for all ¢t € [0, T7.
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Taking into account these inequalities, we conclude that

3 | e OuOur©) de < SOl Lo Oll

g
©

y (2.4) 5 by (2.6) )
2w Ol llvaOllallw@lve < 2w lleqo,r)m llve ()| zllw (@) v,

N A

< 20 [[w?llw,o.0) 02Ol w(®) v,

by 6

INR

1
2 2 L 2
Cr I lwacory |ellos ()% + E||w(t)||vg] frosee i)

6C% [|w? |}

v
by (2.1) 60?5 ||w2||%/v 0,T 50_1 v
¢ WODD (i)l + 5w (4.7

C1

Proceeding in the similar manner, we get

/Qv(t)wx(t)MZ(t) dr < [[w? ()]l [|we ()] o) = ()

by (2.4) ) 9
< 260w Ollallwe @l allv@)lvs
by (2.6) ) 9
< 20\ 0g - [[wllwe o, lwe ()] llv(E)]lvs
by (4.6) —1,,.2 2 1 2
< COp\oy wllwoeory |ellws ) + Zllv®)v;
{E_ 6Cpy/65 " w2l (0,7) }
6CH w13,
(0,T) v
= P lo(@®)1%, + gllw(t)ll%/o, (4.8)
Ca

and
1 . 1 1,
3 ), [ro + 07l ve (t)w(t) dz < 5 llrollzllve (&) ]|z 1w (@) oe @) + 507 [[ve (8) ]|z llw(®) |

rollar + 2| oot

by (2.4),(2.3)

n*| e 1
< |Irolla + 2| [Sles I + oIk,

2 {EZ%NTOHH-F%]}
3 77* 2 2 14 2
= |llrollg + & (D5 + = o '
2 Hlrollr + | a6 + % (o)) w9)
by (2.1) 3 n* 2 - v
< o [HTOHH + 2] 5 1 ||u(t)||%,6 + gHw(t)H%/O (4.10)
Cs

Combining the estimates (4.7)—(4.10), we obtain

1d v
iaﬂw(t)”fq + §||w(t)||%/0 < [C1 4 Co + O] ||v(t)||%/5 for a.e. t € [0, T].
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Hence, taking into account the initial condition (4.3), after integration, we get
t
llw(t)||3; < 2[Cy + Cy + 03]/ [v(s)[[3, ds  for a.e. t € [0,T], (4.11)
0
t 9 t
| e, s < 210+ Ca cul [ et ds (112)
Proceeding in the similar manner with the estimation for the equation (4.5), we obtain

/ o (s (B)o(t) dz = (h(t) — g(t)) / o (B)o(t) de

Q Q

< Ikl z= o2y + 9l = 029) T2l (8) e
(< (thm 1+ gl o) loa(®) I
y (2.
<

(HhIIme )+ 9llz=0.1)) % " [0 @®)]17- (4.13)

D1

Applying the similar arguments, we get
/Qu(t)wx(t)v(t) dz < ||p() || mllwe () ||z [[v(8) | L ()
_ _ 1
s ) R 1 1 o e e
= {1etting e=/ 50_1||u(t)||H} = 05 e llwe @17 + @17,

< 8 il 2 0,722 I @I, + o @)1IT, (4.14)

Do

and

/Qvl(t)vw(t)v(t) dr < |0 ()| arl|ve (8)]| 2|0 ()| L ()

by (2.5), (2.6) 1/2 1/2
< Calloloqorym lva @)Lzl @l 5 v ®) 1y,
6

(2.1) 3/2 1/2
< CaCho w0 llv(t >|| o)

=

by (2.

by (2. _
< CaCillvlwsomllv®F, < CACE50 ot llws o,y eI, (4.15)

Do

and

/Qvi(t) o)) da < [vz ()l o) allo(®) ]| = 0

by (2.5)
< Call? @) v o 13 o)1 < Callv®(®)llve (B 17,
by (2.1)
< Cady PRIy, o(®)]12,. (4.16)

Ds(t)
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In view of the estimates (4.13)—(4.16), we can conclude from (4.5) that

331 (10O + [ 3(0)* da] < Dolw(®IR, + (D1 + Do+ Da(o)] o0,

for a.e. t € [0,T]. Hence, after integration, we arrive at the fulfilment for a.e. ¢ € [0,T] of
the following inequality
2 2 ' 2 ' 2
lo@)E + lv @)l <2Do ||w(8)\|v0 ds + 2/0 [D1+ Dy + Ds(s)] lv(s)llv; ds

by (4.12) 2DO 9
< 2/ 2P0 (01 4 0y 1+ @) + (D1 + Dy + Da(s)) | o(s)[2, ds  (4.17)
0

C(s)

Gathering together the estimates (4.17) and (4.11), we finally conclude that the inequality

@)1 + lv®17, < 2/0 [C1+ Co+ C3+ C*(s)] ([w(s)llF + 0(9)IT,) ds (4.18)

holds true for a.e. t € [0,7T]. Taking into account the fact that

T T 1/2
/ Dy(t)dt < VT (/ |D3(t)2dt> = VT Cu8y 02| L20vy) < +00,
0 0

we have C*(-) € L1(0,T). Hence, by Gronwall’s inequality, we derive from (4.18) that
lw®)||F + lv@)]l3, =0 for ae. t €[0,7]. (4.19)

Now we can summarize the obtained result as follows:

LEMMA 4.1. Assume that the conditions (3.1) hold true. Let (n(-),u(-)) be a weak
solution to the system (3.3)—(3.5) in the sense of Definition 3.1. Then this solution is
unique in [Wo(0,T) +n*] x [Ws(0,T) + u*].

5. On Existence of Weak Solutions to the Viscous Boussinesq System. In or-
der to prove the existence of the corresponding weak solutions to the initial-boundary value
problem (3.3)—(3.5), we will follow the well-known Faedo-Galerkin method which is also con-
venient for numerical approximations. With that in mind, we consider a finite-dimensional
approximation of the problem (3.3)—(3.5). Namely, since Vj and Vs are separable Hilbert
spaces and since C§°(Q2) and C§°(R) are dense in Vj and V;, respectively, it follows that there
exist two sequences of smooth functions {Cx },cy and {&x },cy such that {Cx}, oy constitutes
an orthogonal basis in ¥y and an orthonormal basis in H, and {{x},cy constitutes an or-

thonormal basis in Vs with respect to the equivalent norm /|- |3, + || - I}, ). In particular,
it means that

2 e ) o
R A At RS L i

otherwise, otherwise,
(flmgn)H + (gkagn)vé = 5kna (Cka Cn)H = 6kn7

where 0, stands for the Kronecker delta.
REMARK 5.1. In order to construct the sequence {&i}cy (Tesp., {Ck}ren) with prop-
erties indicated before, we can choose as & (resp., (i) the Dirichlet eigenfunctions of the
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operator Aw = — (5w') +w (resp., the Dirichlet eigenfunctions of Aw = —w") and norma-
lize them with respect to the norm /|| - |3 + || - ||, in Vs (resp., in H).

Following the main idea of Faedo-Galerkin method, we construct two sequences of finite-
dimensional subspaces

Vsm =span {&1,...,&m}t  and Vo, =span {Ci,...,(n}- (5.1)
As a result, we have
‘/zi,m - ‘/57m+17 ‘/O,m - ‘/O,m-‘rly UV;S,m = ‘/67 U‘/O,m = To.

Further, for a fixed m, we set

wm(t) = Ck(t)(:kv Um(t) = de(t)fkv (5.2)
k=1 k=1
W, Zakck, ’Um(O) =Up = Zﬂk&m (5-3)

k=1
ok = (n0—1n ,Ck)H, ﬁk = (w0, &k) g + ((w0)as (€k)a) L2(02:6

and it is clear that
W (0) = o —n* strongly in H, vm(0) = ugp strongly in V. (5.4)
DEFINITION 5.1. We say that a couple of distributions
(W (8) + 7", 0 (8) + 0 () € [Wo(0,T) +17°] x [W5(0,T) + u”]

is a Galerkin approzimation of the weak solution (w(t) + n*,u(t) + u*(t)) to the system
(3.3)(3.5) if wm(t) and vy, (t) have the representation (5.2)—(5.3) and satisfy the following
approzrimate variational problem

(W (8), Cr) vy v + a1 (Wi (t), Gi) + br (Wi (8), om (1), Ce) + b1 (Wi (2), w" (1), Cr)

45 (Fo+ 1T (0], G + 5 (o + 0] l9(0) — O Gy =0, (5.5)

2
(0m (8), &) vy svs + a2(0m(t), k) + ba(vm (8), vm (1), &) + (1) [wm (8)], Ek) g

k)
+ ([om (D], wi(0), ) gy = (F(8): &) g — (@ (1), &) g — b2 (u™ (1), u" (1), &) (5.6)
for a.e. t €10,T] and every k =1,..

REMARK 5.2. Since i, € L? (O,T7 VO) and v, € L?(0,T;Vs) for any Galerkin approz-
imation, it follows that

(o (8), kv vy = (Wm (), Ce) g and (o (1), Ek)yeyy = (Om (), &) - (5.7)

The following assertion holds true.

PROPOSITION 5.2. Under assumptions (3.1)—(3.2), for each m € N, there exists T, >0
such that the Galerkin approximation (wm, (t) +n0*, um (t) +u*(t)) of the weak solution to the
system (3.3)—(3.5) is unique on [0,T,,]. Moreover, in this case we have

{ Wy, € HYO0, Tp; Vom),  m € HY0,Ton; Vi), 58)

Wm € C([Ov Tm}; VO,m)a Um € C([O, Tm]§ V;S,m)'
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Proof. To begin with, let us show that unknown coefficients {cy ()}, oy and {di(f)},cn
can be defined from the system (5.3),(5.5),(5.6) in a unique way on some appropriate time
interval [0, T,,]. To do so, we note that because of orthonormality of the sequences of smooth
functions {(x},cy and {&r}y ey in H, we have for all k =1,...,m

NE

(W (8,60 = (e (CsGe) = (),

Il
-

S

NE

(o (®):6) 5 = (D o€ &) | = du®)Gl13-

1

S

Moreover, the orthogonality of these systems in V and Vj, respectively, implies

ar (W (t), Ce) = v (Chy G g ex(t) = VIl Tcn(t),

m

t),&k) = Z (085, &) i = 1€ 1172 q. §dz)dk( ),
s=1

b (W (1), v (£), Co) = /Q [Z cs<t><;] [Z dj(t)éj] G da

j=1

Jj=1

oo
Z (Csugwgk Cs ]
s,j=1

b1 (Wi (t), U™ / [Z cs(t ] t)(k, dx

5 [Z c3<t><s] W ()G do

s=1

Z Csa Ck Cs( )d] (t)7

bQ(Um<t)a'Um(t>7§k) (gsgjvgk) ( ) J(t)7

“MS

> (0 om0, + 1 om0, Gy = 5 D (L +7°€L, ) o),

3
w
I
—

(@) [wm (D)), Ek) gy (1(£)Ce &) gr s (1),

@
I
—

([ (8)], w20, 03 (€6
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Taking these representations into account, we set

Cr(t) = [er1(t), ... em®)])",  C° =[aq,...,am]",

D (t) = [dy (), ..., dm(®)]", DO = [B1,...,0ml",

Fo(t) = [F1(t), ..., Fu(t)]"  with Fi(t) = (f(t), &) g — (07 (), &) g — ba(u (), w* (), &),
Ry (t) = [Ra(t), ..., R (t)]"  with Rk(t):%([TO‘f'n*] [h(t) = 9], Ck) gy

LT with al = 2 (o€l 4 7€ G)y
a?j(t)]zrfj: with a;(t) = ()G, &)
o = [63]7, with ay = (6,6),,

Ky = ding (|G, 16l }

[ Cfn(t)Bm,l(Cm(t) 1
(Cﬁn(t)Bm(Cm(t) = te )
L C; ( ) ml(cm(t) i

where B, i [bk]” L with bfj =01(Gi, &G, Cn),s

Dtm( )Bm,l]D)M(t) 1
Dfn(t)@mﬂ)m(t) = o )
]D)t ( )Bm IDm(t) J

where B, ) = {bk} with gfj = (&&, &)

i,j=1

Then the system (5.3),(5.5),(5.6) can be represented as follows

Con(t) = =Ky i Crn(t) — Aq Dy () — CL (6) B Con (1) + Ry (1),
Dy () = =1 (£)As D (£) — Az (£)Crn (£) — DY, (8) By Dy () + Foa (£). 59)
C(0) = C '
Dy, (0) =

Since the sequence {{ } < is an orthogonal basis in V5 with respect to the equivalent norm

\/HUHH + Hu:c”Lz(Q 6 dyr 18 follows that

diag {||§1H%17~-~7||§m|ﬁ{} + diag {||§§||2L2(Q;5dx)a REE Hg;n”%Q(Q;édac)}

is the identity matrix. Hence, for each m € N we deal with the following Cauchy problem
for a linear-quadratic system of ordinary differential equations

% lorto] = [y et ] [oro]

- [&Eggzgzm * FEZ((Q] , t>0, (5.10)

8- )
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In view of the initial assumptions, we have

Fin() € L*(0,T;R™), uy(-) = g(-) = h(-) € L¥(0,T), Azm(-) € L¥(0, T;R™™).

x

Hence, by the Carathéodory’s existence theorem, the Cauchy problem (5.10)—(5.11) admits
a unique solution [C,, (t), D, (¢)]" in C([0, T,,]; R*™) for an appropriate T}, > 0. As a result,
the representation (5.2) immediately leads us to the conclusion

W, € Hl(O,Tm, VO,m)a Um € H1<07Tm7 ‘/(S,m)

and, therefore, wy, () € Wy(0,T,) and vy, () € W5(0,T,,). It remains to note that the rest
functional properties that were indicated in (5.8), are the direct consequence of the Sobolev
embedding theorem (see Remark 2.3). O

REMARK 5.3. Since the nonlinearity in the right-hand side of the system (5.9) is locally
Lipschitz continuous with respect to the vector-function [Cp,(t), Dy (1)]°, by the well-known
results of ODEs theory (see [19]) it follows that the unique solution to the Cauchy problem
(5.10)—(5.11) can be extended by continuity from [0,Ty,] to any larger interval. Hence, we
can suppose that the intervals [0,T,,] can be chosen such that (T,, > T form=1,2,...).

Our next intention is to show that the sequence {(wy,(t), vm(t))},,cn of Galerkin ap-
proximations possesses some compactness properties in an appropriate topology. To do so,
we begin with the following technical result.

LEMMA 5.3. Under assumptions (3.1)—(3.2), there exists a constant C* > 0, indepen-

dent of m € N, such that C* = C* (||hHW01,oo(O’T), ||g||W01,oc(0,T)) and

wm (O + [vm ()17 + lom@®F, < C* for allm € N and t € [0,T]. (5.12)
In particular, the following estimates

[om )|, <@ (T +® (IIno — n* (1% + lluoll % + luoll?,)) V¢ € [0,T], (5.13)
lwm ()7 < llno —n* |15 + C5T
+C TS (T + @ ([no — n* 17 + luollF + lluolly,)), VE€[0,7]  (5.14)

hold true, where
* 1 .
Cs = 5 ol + 771,
* 1 *12 2
Cl = ; [HTOHH + n ] (”g”LO"(O,T) + ||h||Loo(07T)) ,
* _ 3~ A
Gy = \/5071 |:||fL°°(O,T;H) + 50 + 02} , (5.15)

N 1 (A 1
6 =05 (Ot gollliorn )

C= ||g||W01’°°(0,T) + ||hHW01‘°°(0,T)’

and

ds

q
®(q) :=/ — ;
e Cr4+C3/s+(Co+C5)s+06," s/s

(5.16)

for some positive value € > 0.
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Proof. Multiplying the equations (5.5)-(5.6) by ¢ (t) and di(t), respectively, and sum-
ming both equalities for k =1,...,m, we get (see also (5.7))

([ro + 071 fom (8)] > wm () 5

N | =

(Wi (1), Wi (t))H + a1 (Wi (t), wn (t)) +

—~

+ 1 ([ro +1"][g(t) — h(t)] ,wm(t))y =0, forae. te[0,T], (5.17)

2
m (8)) + b2 (U (), 0 (8), 0m (8)) + ((t) [wm (8)], » v (8)) 5

(0 (8), 0m (8)) g + a2(0m (1), v 2
+ ([om (0] uz(8), om (1) g = (F();0om(8) gy — (@7 (8), v (8))

— ba(u™(t),u"(t), vm(t)), for a.e. t €[0,T]. (5.18)

We note that by (5.8) and Lemma 2.1, for a.e. ¢ € [0,T], we have

(W (), wm (1) fr = 5 = lwm ()7,

(i (1), v (1)) 31+ 020 (1), 0 (8)) = 5 (o) + om0, ] 1)

a1 (Wi (£), Wi (£)) = v]|win (8)]3; -

Moreover, the Holder’s, Young’s, and Agmon’s inequalities imply the following estimate for
the rest terms in (5.17)—(5.18):

1 * 1 *

5 (0 [om @], + 7" [om ()], win (0) i < Sllro + 07 |z [fom ()]l 22 [ wm ()] 2= ()

by (2.1), (2.4) —
rolle +m1 4/ 86 lvm ()]s l[wm () v,

by (4.6) c 1
< liroller +m*14/ 85" [va(t)”\z/ + o= [lwn ()17,
2 T He=2lrola+n1v/57)
v 0

1 N v
= —(lIrollzr +0"1 lom O)IIF; + 7 lwm(@)17;; (5.20)
1/60 4

=0

([ro + 77T lg(®) = h(®)], wm (1) < %ll?"o + 0" (lgll oo,y + IRl o 0,7)) 1w (8) ] 2

<[llrollz + 77T (lgllz= 0.7 + 1]l L= 0.1)) llwm ()l

by (4.6)

5 N 1
< (llglz=m) +lIhllz=(0,7)) [2 [roller + 7' + o llwm (DI

N |

2
{e= 2 (st + liom) |

* 2 1%
Uiroller +n*T (lgllz= 0.1 + 1Rl s 0.1)) + 7 lwm @)% (5.21)

R | =

oy
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(P o) < WO llom @l < o5 1o rmlom@lvs (5:22)
(i (), 0 () g < i Oll o (@)ar < 2/55™ (1)) + 5(0)]) om (D,

3 _
< V8 (lglwp o) + IBlha= o)) Iom®llvii  (5:23)

c

bz(U*(t),U*(t),vm(t)):/QU*(t)u;';(t)vm(t) da < (|g(@)] + [h(O)]) uz @)l lvm ()| 7

2
< (Igllwg =0y + Wllwpeiory) /35 lom®llvs

= C2\/65 M [om (B)llvs; (5.24)

([om ()] uz (1), v (D) gy < (9O + RO lom )IF, < (I9E)] + R E)]) 65 lvm (BT
< 65 ' Cllvm ()13 (5.25)

b2 (U (t), v (1), v (1)) < /Qvfn(t)l[vm(t)]wlda? < Nom @z | [vm Ol | [vm )| Lo (@)

<O lom@lallwm@lelmllom ®) v,

< 85 Jom Ol lom 3, < 65 lom (B, (5.26)

(1) [wm®)] s vm () 7 < 1)L [Twm Ol [ [0m ()] 2 ()

< /80 llill oo 0,750 1w (8) o 1o () v

_ € 1
< /60 el o 0,3y [QIIwm(t)IIQVO + %va(t)lléé

Vo "l oo 0,7, m)

v 1
< §me(t)||2vO +3,% el o 0,770y lom (D)1 - (5.27)

Combining the estimates (5.20)—(5.27) together with the representations (5.19), we derive
from (5.17)—(5.18) the following inequalities

1d 14 * *
L (01 + Ll 01, < Cillon (03, + C. (5.2%)
1d _ 3~ =~
> [lom )17 + [lom (E)]13,] < \/ % ' [|f||L°°(0,T;H) + 50 + C?| Nlvm () |lvs
c3

1A, 1 ~3/2 v
#57 (C gl n ) Tom @1 + 65 om @)%, + Slum (Ol (529

3
Then it follows from (5.28)—(5.29) that

d

2 em @z + lom @7 + v @I7,] < @ (lom®llvs) (5.30)
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where
U(z) = Cf + Cyz+ (Cf + C3) 22 + 6,2 22,

Thus, we arrive at the differential inequalities

d
% 1+ om0 + [0 (®}] < ¥ (lom Ol1s) (531)
d
e @1 < Gillvm @1, +CF, (532
Oy + T O + i (O, ™ £ 3 (0 + 57). (5.33)
k=1

By Parseval’s identity, we have the following monotonicity property

m o0
S (02482 A3 (a2 +82) = o — 0% + luoll% + luoll, as m — os.
k=1 k=1

Hence, the sequence {||wp, (0)[|3; + [[vm (0) 1|7 + [[um (0)]13, }mEN is bounded. Therefore, pass-
ing to the integral form of (5.31)—(5.33), we obtain

t
lvm (B)11F; < o = 17113 + lluoll3; + [luolI7 +/0 U (lom(s)I3;) ds, te€[0,T], (5.34)

[wm O F < llno —n*ll7r + CYT + C§ /Ot [vm()I1%, ds, ¢ €[0,T] (5.35)
with
U (2):=Cr+Civz+ (Co+Ch) 2+ 6, % 2/2. (5.36)
Putting

¢
vty = [ ¥ (lonIR) ds. te 0.
we have y(0) = 0, and the relation (5.34) leads us to the inequality

() < (Ilno = 0" + lluollZ + lluoll}; +u(t)), te[0,T).

Then, by integration on [0, t], we get

y(t) ds
/ = 5 5 5 <t, te][0,T].
o W (|lno —n*ll3 + lluollZ; + lluolly, + s)

Setting ®(q) := [’ @d(ss x where ¢ > 0 is some small enough positive value, the previous

inequality can be rewritten as follows
© (y(t) + llno — 077 + luollzr + lluollY,) < t+@ (o —n*lIF + lluoll7 + luollf;)
that is (see (5.34) and (5.36))

lom ()17, < @7 (t+ @ (Ilno — 0" 1% + luoll + lluoll¥;)) V¢ € [0,7]. (5.37)
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It is worth to notice that the function [0,+00) > t — U(t) € [0,+00) is monotonically

increasing. Hence, there exists a unique inverse function ¢ — ®~!(q) with the same property.

As a result, (5.37) and (5.35) immediately imply the required estimates (5.13)—(5.14). O
As an obvious consequence of Lemma 5.3 and inequality

T T
v / lwm (D)2, dt < [wm (O3 + CiT + Cy / lom (8)]12, dt

by (5.13) B .
< wnO)[F +CIT+CgT @ (T + @ (no — 01 F + lluollzr + luoll?;)), (5-38)

coming from (5.28), we have the following result.
COROLLARY 5.4. The sequence of Galerkin approzimations { (W, (t), vim (t))},,cn 18 such
that

{wm(t)},,en @8 bounded in L*(0,T; H), (5.39)
{wm ()} hen s bounded in L*(0,T;Vy), (5.40)
{vm ()} ey s bounded in L>(0,T; V), (5.41)

uniformly with respect to m.

We now proceed with an estimate of the norms of { (1, (t), 9 (t))},,cy in appropriate
spaces. R R

LEMMA 5.5. There exist constants Cy, (k=1,...,3) and D; (i=1,...,5) independent
of m such that the following estimates hold:

n o ¢
[t (8) |y < Cs + V2 max {u 120, 02} VO (D) + 5 Pu(t), (5.42)
lom (@l + [6m (@) lv; < Dy + Ds+ V2 (D + D2 ) /& (1) + Dsr(2) (5.43)

for allm € N and a.e. t € [0,T), where C is defined in (5.23) and
2 2 p v (12
O (t) = lwm Ol + lom Oz + lom Oy, < C" (5.44)

Proof. Let z € Vi and v € V5 be arbitrary elements, and let m € N be a fixed positive
integer. Then we have a decomposition

z=w+uw’, v=u+u,
where w € Vo m, w’ € Vof-m, u € Vs m, and u® € V:;J’-m. Hence,
lwllve <llzllve  and  [luflv; < [lv]lv;. (5.45)
Since (see Remark 5.2)
(m (1), 2y vy = (m(8),w)y  and (0 (t), 0}y, = (Om(t), W)y (5.46)
it follows from (5.5)—(5.6) that the following equalities
(m (1), 2) g = —a1(wm(t), w) = bi(wm(t), ’Um(t) w) = by (wn(t),w" (), w)
— 5 o+ 7] o ()] )y — 5 (o + 1] g(8) — R(0)] w) (5.47)

2
(O (1), 0) g + a2(0m (1), v) = =ba(vm (1), vm (t),w) = (u(t) [wm (D)],  u) g
= ([om (D], uz(8);w) g + (f(8), w) g — (@7 (1), w) g = ba(uw"(8), u™(t), ) (5.48)
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hold true for a.e. t € [0,T].

Then, by analogy with (4.7)—(4.10), we get
a1 (wm (1), w)| < v]wm(®)|lvs [[wllvs,

|01 (wnm (£), v (t ( [[om ()]l 2 [[ w0 ($) | Low (2) + |[wm(t)]x||H”Um(t)||L°°(Q)> [[wl| e
by (2.1),(2.4),(2-3)
< \/ Hlom @)lvs lwm O)llva [wllve,

[b1 (Wi (), w" (), w)| < (QII[U*(t)]wIIHIIwm(t)ILoc(m + ||[wm(t>]:v||H|U*<t)||L°°(Q)) [[wll e

by (3.12)
< (gl = 0.1 + Wl 0.z ) Qlom @l + N (D) 1) el

c
= 20w (8)[lvp [w]lvs,

e P S P P ) P PP [ e W P P
F (ol + 5 o @l v
Cs

|5 (ro+ 71 [o(0) — B )y | < 2 lrolllot®) — ho) el e ey + 5n°l(e) — RCO) il

~ 1 N
<& (Iroll + 37 ) e

C3

Hence, combining this estimates with the representation (5.47), we obtain

(o (8),2) 1] < [Cs+ (v +2C) fwm(®llve + Callom ®) s lewm (8)l1ve + Collom @llvs ] 1wl

< |Cs+ (v +2C) lwm®)lve + Collom®llva lwm@llva + Collvm Bl | I12]1e.

Then, by definition of the norm in V', we may write

[t (2)]

vi < Co+ (v+2C) Jwm(®)Ivg + Cillom Ollvi lom @ v, + Collom (@) v,

< C5 + V2 max {y +2C, 62} Vo (t) + %@m(t)

by (5.12) ~
< C, forallmeNandae. te[0,T], (5.49)

where the constant C' does not depend on m.

Now we can proceed with the similar estimation for the equation (5.48). Using the
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Schwarz, Friedrich’s, and Young’ss inequalities, we infer
[(1(t) wm ()], s w) g | < Natll oo o, Twm ()], N1 llull oo ()

< 24/8q il oo o150y lwm @)Iva llull v,

| ([ (®)], s (0, 1) g | < Cll [om ()], N llullzr < 857 C llom () v l1ulvs
—
Do
| (PO, w0 — @ @), ) g | < W F oo, zsmllull i + 1@ @)l llul

< o5 (I eeo.zsm + Wl e o.my + 190,19 ) v

D3

and

< om O]l el lom ()] L 2

b2 (Vi (1), Vi (2), u)| = ‘/ﬂu[vm(ﬂ]xvm(t) dz

< 280" [om (D)1, lullvs
N——
Ds
MW@www:Awwwmmsmmmwﬂmwm@

< \/05 1 C* [lullv,.
N——
Dy

In view of these estimates, we deduce from (5.48)
(O (1), 0) g+ a2 (5 (£),0) = (B (£),0) 5 + (B (), 0)y,
< [Dillwm®llv + Dallom(®)llv; + Ds + Da + Dslum(DII3, ] Iullv,
< [Dallwm ®)llve + Dallom@®)llvs + Ds + Da + Dslum (DI, ] l1o]v;.
Hence,
[om (&)1 + [6m () lvi < Dallwin ()llve + Dallvm(®)lv; + Ds + Da + Ds|lvm (|3,
< Ds+ Dy +2 (Bl + ﬁg) V(1) + Ds (1)

by (5.12) -
< D, forallmeNandae. tel0,7T], (5.50)

where the constant D does not depend on m. The proof is complete. O
REMARK 5.4. Lemma 5.5 shows that the sequence {1, ()}, cy is bounded in L>(0,T; Vi)
while the sequence {0y, (t)},,cy s bounded in L>°(0,T; Vs). Combining this fact with Corol-
lary 5.4, we conclude that
{wm (t)},nen 18 bounded in L>(0,T5 H) N Wy (0,T), (5.51)
{tm(t)},en 38 bounded in L>(0,T;Vy), (5.52)
{om ()}, en i bounded in W>°(0,T; Vs). (5.53)
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Hence, by Banach-Alaoglu compactness theorem, we can deduce that there exists a subse-
quence of the sequence of Galerkin approzimations {(wm (t), vm(t))},,cn, still denoted by the
same suffiz m, such that, as m — oo (see Lions [16, Theorem 5.1] and Simon [20]),
Wy, — w weakly in L*(0,T; Vo), ( )
Wy, — w weakly-+ in L>(0,T; H), (5.55)
W — 2z weakly in L*(0,T;Vy) and weakly-+ in L>(0,T;Vy), (5.56)
Um — v strongly in LP(0,T; Vs) for any p € (1,00) by (5.53), (5.57)
VUm — v weakly-+ in L>=(0,T; Vs), (5.58)
Um — u weakly in L*(0,T;Vs) and weakly-+ in L>°(0,T; Vs), (5.59)

where z = w in the sense of D'(0,T; V), and uw =¥ as elements of D'(0,T;Vs). Indeed, in
view of the definition of generalized derivative, we have

T T 8
/ (W (1), )y 2(8) dt = —/ (wm(0), )y, 52 dt, V¢ € Vi, Vo € CE°(0,T).
0 0

Then (5.54) implies that w.,, — W in the sense of distributions D'(0,T; Vy). Since, the limit
in D'(0,T; Vy) is unique, in follows that z = w. The similar arguments show that u = v in
D'(0,T;Vs).

In order to proceed further, we need a couple of the following technical results.

PROPOSITION 5.6. Let {(wnm (1), vm(t))},,cn be a sequence with properties (5.51)~(5.53)
and (5.54)—(5.59), and let u € L*(0,T;Vy) be an arbitrary distribution. Then

T

T
m [ by (wm(t), vm(t), u(t)) dt = /Obl(w(t),v(t),u(t))dt. (5.60)

m—r 00 0

Proof. Following the definition of the trilinear form b; (see (3.8)), we have
r 1
/ by (W (t),v ))dt = / / [wm N avm (E)ult) + 2wm(t)[um(t)]zu(t)] dxdt

/ / ([ (8))a — [0(8)]2) o(t)u(t) dadt + / / [ ()] (0 (£) — 0(8)) () dadt
/ [ ottty dode+ 5 / | 0 6) = ) o)t o
ol / 0 (o ~ Ol u) a3 [ [ wOo@)e) doar

— gy // w(t) dadt + I + T + // u(t) dadt.

(5.61)

Since the inclusion v € L>(0, T}; Vs) implies v € L>(Q), it follows that v(-)u(-) € L*(0,T; H).
Hence,

J" =0 as m — oo by condition (5.54). (5.62)
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Besides, the estimate

T T
/ NNl laE) 1 i < 677 / Vo6 llvs )
0 0

—1/2 —
< 80 2 oll 2 o.rvm lull 2o, < /05 T 0l e o.05v) lull 2 0,75v0)

shows that [v(-)]u(-) € L*(0,T; H). Therefore, from (5.55), we deduce that
J" =0 as m — oo by condition (5.54). (5.63)
Further we notice that {[wy,(-)]zu(-)},,cy is a bounded sequence in L'(0,T; H). Indeed,

T
/ [[wm (®)]ew(®)| # dt < [|[wm]ellL20,r:m vl L20,7:m)
0

by (5.51)
< ull 20, 13v%) Su% lwm || L2 0,7;v0) < C< 400 (5.64)
me

Taking into account the characterization of the set W°°(0,T; Vs) (see Evans [7, p.279)]),
we have: {v;,()},,cn is @ bounded sequence in the space of Lipschitz continuous functions
C%1([0,T); V5). Hence, by Arzela—Ascoli theorem, we obtain

T
lim [J3"] < lim [[wm ®)]aw(®)l g [lvm () — v(t)|| dedt

m—0o0 m—r oo 0

by (5.64) . .
< Clim fon —vloqria <C lm{lvm —vllogqorvs = 0. (5.65)

It remains to study the asymptotic behaviour of the forth term Jj*. To this end, we make
use of the following chain of estimates

T
207" S/O [[wm (E)]| oo (@) [I[om ()] = (0]l g [1u(®)]] e dt

y (2. T 1
2%, / e L2l L o () — (0]t sl it

T
< Ca sup |2 01, / e (O N ()] — (O]l a1 e

D

T 1/2
< Dlullp2(0,7;m) (/0 lwm (8)llve lfom (®)]e — [0l 5 dt)

1/2 - 1/4
4

< Dllullz20:r2v0) <Slé%||wm||L2(o,T;Vo)> (/ va(t)]z—[v(t)]mlHdt) .

(5.66)

. by (5.54)
Since sup [[wml[z20,73v,) < +oo and
meN

/ o (®)e — WOl dt < 857 / ' ( [ (o). - [v(t)]zfadx)Q i

—2 4 4 -2 4 by (5.57)
< 0 [[om () — U(t)”Va dt = 6 " |lvm — U||L4(0,T;V5) — " 0asm — oo,
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it follows from (5.66) that
J—=0 as m— 0. (5.67)

Thus, in view of the properties (5.62), (5.63), (5.65), and (5.67), the limit passage in (5.61)
as m — oo leads to the desired relation (5.60). The proof is complete. O

PROPOSITION 5.7. Let {(wm (t),vm(t))},,cn be a sequence with properties (5.51)~(5.53)
and (5.54)—(5.59), and let u € L*(0,T;Vs) be an arbitrary distribution. Then

T

lim [ bo(vm(t), vm(t), u(t)) dt = /Obg(v(t),v(t),u(t))dt. (5.68)

m—r oo 0

Proof. Taking into account the definition of the trilinear form by (see (3.9) and (3.11)),
we have

/Tbg(vm() ) dt = //vm [V ()] 2u(t) dadt
/ / (v () — o) [o(8) ] u(t) dadt + / [ o 6) (00 = p(0)) ult) dode

/ / fdedt = D74 D+ [ ba(o(t). o), u(t))dr. (5.69)

0

Then, in view of implication v € L*>(0,T;Vs) = v € L>=(Q), we obtain

[ )=o) Oty dode] < ulimi) [ 10 = o®llna) s

< vl @ llullzzo,7;m) lvm — vllL2(0,7;m)

< 0 vl (@ llull 2 0,25v) 1om = vll 20,713 -
Hence,

lim DT = 0 by the strong convergence (5.57). (5.70)

m—r o0

As for the term D3*, we have

oyl = [ ) [ o 0) (om0, = 000 u(t) dect]

T
< [ lem@lollem @)~ Okl o)
v (2.1), (2. T
O o o oz [ Nom @l = POl

<2y/6," sup vm ()| o 0,1vs) l[vmlz — W]zl 220,056 1wl 22 0,7, 11)
me

c
< C8y Mvm — vllr20,7:vi)llull L2 0.1v5) — 0 as m — oo by (5.57). (5.71)

Combining this result with (5.70), we can pass to the limit in (5.69). Thus, the equality
(5.69) follows. O
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We are now in a position to prove the main result of this section.

THEOREM 5.8. Assume (3.1)-(3.2) hold true. Let {(wn(t) + 1", um(t) +u*(t))},,en
be a sequence of Galerkin approzimations to the corresponding weak solution of the initial-
boundary value problem (3.3)~(3.5). Then there exists a unique pair

(w,v) € [L>=(0,T; H) "Wy (0,T)] x WH(0,T; Vs) with w € L>(0,T;Vy)

such that (w,v) is a limit for the entire sequence {(wpm(t),vm(t))},,cn @8 M — 00 in the
following sense

Wy, — w weakly in L*(0,T; Vo), (5.72)

Wy, — w weakly-+ in L>(0,T; H), (5.73)

Wy, — b weakly in L*(0,T;Vy) and weakly-+ in L°°(0,T;Vy), ( )

Um — v strongly in LP(0,T;Vs) for any p € (1,00) by (5.53), (5.75)

U — v weakly-* in L>(0,T; Vs), (5.76)

O — 0 weakly in L*(0,T;Vs) and weakly-* in L>(0,T; V), (5.77)
and (w + n*,v 4+ u*) is the weak solution to the initial-boundary value problem (3.3)—(3.5)
in the sense of Definition 5.1.

Proof. To begin with, we note that the sequence of Galerkin approximations is relative
compact with respect to the convergence (5.72)—(5.77) (see Remark 5.4 for the details). Let
{(wm(t),vm(t))},,cn be its arbitrary subsequence with properties (5.72)-(5.77). Our first
intension is to use these properties in order to pass to the limit as m — oo in variational
problem (5.5)—(5.6). However, we have to keep in mind that the test functions in (5.5)—

(5.6) have to be chosen in Vp ,, X V5. To do so, we fix a couple of distributions (z,u) €
L?(0,T;Vy) x L?(0,T;Vs). Since

2(t) =Y we)C and u(t) =Y Ap(t)&
k=1

k=1

and these series are convergent in V; and Vj, respectively, for a.e. ¢ € [0, T, we set

() =Y wet)G and un(t) =D A(t)én
k=1 k=1

and keep N fixed, for the time being. If m > N, then we obviously have (zy,un) €
L2(0,T; Vo,m) x L*(0,T; Vs). Hence, multiplying equation (5.5) by wg(t) and equation
(5.6) by Ax(t) and summing for k = 1,...,m, in view of the property (5.7), after integration
over (0,T), we get

T T T
/ (o (£), 2 (8)) it + / a1 (wm (@), en OV dt+ [ by (i (£), v (1), 2x (1)) dE
0 0 0

by (1 (£), 1 (1), 2 (£))

A
2l

70 [Vm ()], + 0" [vm ()], » 23 () 5 i

I\DM—\ l\D\»—~ \

([ro +n"][g(t) = h(t)],zn(t))y dt =0, (5.78)
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T

/(i)m(t),uN(t))H dt+/ ag(i)m(t)mN(t))dt—&-/ b (Vi (), v (t), un (t)) dt
0 0 0
T T
+A<mmwwmwmmHﬁ+A<Mﬁm@wmmmHm
/ () un () db— / (i (£), un (1)) dt
/ bo(u* (1), u* (1), un (1)) d. (5.79)

Due to the weak convergence of the sequences { (W, (t), vm (t))},,en and {(Wm (t), 0m (1)) },,en
in their respective spaces (see (5.72)—(5.77) for the details), we can pass to the limit as
m — oo in that relations. Since (see (5.7),(5.74), and (5.77))

(i (1), 280 (1) :
(o (1), un (1)) g1 + 2 (b (), (1)
)

= (0m(8), un (1)) -y + a2(0m (), un ()

m—r o0

W (t), 28 () vy, — (W(E), 28 (8))ye vy,
(0 un (1)), + a2(0(2), un (1)),
it follows from Propositions 5.6 and 5.7 that the following equalities are valid
/ (), 2 (1)) dt+/ al(w(t),zN(t))dt—i—/ by (w(t), v(t), 2x (1)) dt
0 0 0
T T
+ [ O Oen@)de+ g [ (ot ) o], o 6, e
5 [ Qo) o) = he)] n(0)y it =, (580)
T
/0 (0(t), un (1)) dt+/0 as(0(2), un (¢ dt+/ ba (v () dt
[ O o] v (0), i+ / ([0(0)], (), un(®), dt
T T
— [ GO @)y dt— [0 ux (@),
0 0
_ /0 bo (™ (£), u* (), un (1)) dt. (5.81)

Now, we can let N — oo keeping in mind that zy — z and ux — u strongly in L2(0, T Vp)
and L?(0,T;V;), respectively. Taking into account that the result is valid for all (z,u) €
L?(0,T;Vy) x L?(0,T; Vs), we finally conclude the fulfilment of the following equalities

(W(t), 2) vy, + ar(w(t), 2) + bi(w(t), v(t), 2) + br(w(t), u' (1), 2)

(

(o) ], 2 + 3 (o] lo®) — B )y =0, (5.52)

(9(0), 1)y, + @2 (0, ) (0(0), 000),0)+ (1) (), )
([0, w30, 1)y = (), ) — G (), )y — b (), (1)) (5.89)

for all z € Vj and u € V5, and almost each ¢ € [0, 7).

(
) -
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It remains to show that (w(t),v(t)) satisfy the initial conditions w(0) = ng — n* in H
and v(0) = ug in Vs. To begin with, we note that w € C([0,T]; H) and v € C([0,T]; Vs) (see
Remark 2.3 and Lemma 2.1). Let us check the condition v(0) = wg in Vj (the similar assertion
for w(0) can be verified in the same way). With that in mind we fix u € C1([0,T7]; Vi) with
u(T) = 0 and apply the integration by parts in the following relations

/(%@mwmﬁ=—me@m—/(w®ﬂwhﬁa
0 0
T

T
/ @ (0 (), u(t)) dt = — (U, un(0)) 120 o) — / az (vm (), 4(t)) dt.
0 0

Then from (5.81) we find

T T T
*/(wmeMHﬁ*/am%wmmmﬁ+/lewmewﬂDﬁ
0 0 0

+

tA <ua>wman,uwwnﬂwﬂ+;é (o (B, w5 (8), un (1)), dt

T
U@mmmHﬁfA<mmwmmHﬁ

by (u” (), w”(t), un () dt + (U, o8 (0)) 1 + (U, v (0))y -

5

(5.84)

/OT
f

Letting the first m — co and then N — oo and taking into account that U,, — ug strongly
in Vs, we get from (5.84)

T T T
7/0 (v(t),u(t))H dtf/o az(v(t),u(t)) dtJr/O ba(v(t),v(t), u(t)) dt
T T
+A<mmmmwmew+A<Mmﬂmmmeﬁ
T T
— [ GOy de- [ @00, d
0 0

= [ a0, 0. 0)) -+ (00 + 0, uO)y - (559

On the other hand, if we apply the integration by part formula to the relation (3.18) with
1 = v(t), we obtain

T T T
—A(memHm—Acmwmmmﬁ+[lwmmmeMﬁ
+A<mmmmwmme+A<Mmﬁmmmeﬁ
T T
:/<ﬂmmmHm—/<w@wwMﬁ
0 0

T
—/0 ba (™ (t), u™ (t), u(t)) di + (v(0),u(0)) y + (v(0),u(0))y; - (5.86)
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Substracting (5.86) from (5.85), we have

(v(0), u(0)) 7 + (v(0), u(0))y, = (uo, u(0)) 7 + (uo, u(0))y; -

By arbitrariness of «(0), we finally obtain v(0) is equal to ug as elements of Hilbert space
Vs. It is clear that the similar assertion is valid for the equality w(0) = ny — n*.

Thus, summing up the obtained results we can give the following conclusion: the pair
(w(t)+n*, v(t)+u*(t)) is a weak solution to the initial-boundary value problem (3.3)—(3.5) in
the sense of Definition 5.1. Since this conclusion is valid for any cluster pair of the sequence
of Galerkin approximations {(wm, (t), vm(t))},,cn and the system (3.3)—(3.5) admits a unique
weak solution (see Lemma 4.1), it follows that (w,v) is a limit pair for the entire sequence
{(wn®), v (8) } e D

REMARK 5.5. It remains to observe that estimates (5.13)—(5.14), (5.38) and (5.42)—
(5.43) are still valid for the weak solution to the initial-boundary value problem (3.3)—(3.5)
(w+n*,v4+u*). With that in mind it is enough to take into account the strong convergence
(5.4), the properties (5.72)~(5.77), the lower semi-continuity of the norms || - ||z2(0,1;vs)s
Il - llz2(0,73v), and | - ||L2(0,T;V0*) with respect to the weak convergence in the corresponding
spaces, and pass to the limit in (5.13)—(5.14), (5.38) and (5.42)—(5.43) as m — oo.

6. On Regularity of Weak Solutions to the Boussinesq System. In the context
of optimization problems closely related with the Boussinesq system, the regularity of the
solutions of the corresponding initial-boundary value problem (3.3)—(3.5) plays a crucial role.
Typically, the regularity of the solution improves with regularity of the original data. In
view of this, we begin with the following result.

PROPOSITION 6.1. In addition to (3.2), let us assume that ng € Vo := H}(Q). Then
a unique weak solution (w + n*,v +u*) of the initial-boundary value problem (3.3)—(3.5) is
such that

w € L°(0,T; H) N L*(0,T; H*(Q) NVy), w € L*(0,T; H), v € Wh(0,T;Vs)  (6.1)
and there exists a constant D, > 0 depending on
Q T, v, |hlle=@mr): l91llL=@1) 1flz=(0,1;m)5 loollL=or), llo1llL=(o,r),
leell oo 0,7y 00 =" [z, Nmoll¥s Nlwoll¥ys Niroller, o, and n*
which satisfies the estimates

||U’||%2(o,T;H2(Q)) + Hw||2Loo(o,T;H) + ”wH%Z(O,T;H) < D., (6.2)

HU”%OO(O,T;VJ) + H@”%W(O,T;V(;) <D.. (6.3)

Proof. Multiplying the equation (5.5) by ¢x(t) and summing for k = 1,...,m, we get

e (D)1 77 + @1 (Wi (£), 1 (£)) + b1 (w0 (8), Vi (), o (£)) 4 b1 (wi (£), 0" ()t (1))

Lo+ ) wi (), () =0, (6.4)

43 (o +7%) [om (B, () + 43

2
for a.e. t € [0,T]. We note that

a1 (W (1), (1)) = v (Wi (), 0 (), = gjt

I [wm (D)]2]|3;  for ae. t € (0,T).
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It was indicated in Remark 5.4 that, for each m € N, we have v,, € W>(0,T;Vs).
However, because of the continuous embedding Vs — C(Q2) and the fact that inclusion
vm € WHe(0,T; Vs) implies v, € C%([0,T]; Vs), we deduce: [vy,], € L>®(Q) for each
m € N. Hence, there exists a constant C'g > 0 such that

e [ ()]sl < O mase o ()]sl < Ol w0710

As a result, by Hélder’s and Young’s inequalities, we derive the following estimate:
1 1

5 (0 [om @], + 0" [om ()], 0 () i < Sllro + 7" |z [[[om ()]l Lo (@) [[e0m ()] 22

< <~ llrolla +n7Tl[omllwree .v5) [om (@) | 1

Cg w1 | € 1.
2 lIrolln + 7] |5 lomlBin o) + 5 N (O

. 3 *
{lettmg €= §CE lNrolle +m ]}

C? . 1.
= S Mol + 771 om0 vy + g lom I (65)

The similar one holds true for the last term in (6.4)

5 (roug + 0" ug, (1) < Sllro + 07|l mlluz ] oo oy lltm ()|

1 , .

< S ol + 7] (Iolhug = 0.0 + Il = 0.z ) im0
c

1 “al€a 1.

< g lrlla + 71 |56 + 5 im0
¢ {e=30Irollu+n1}

3C? b2 1o

= 2 ol + 07 + & s 1 (6.5

Since

b (W (£), Uy (£), i (£)) = /

[[wm ()], vm (B)om () + 1wm(t)[vm (t)]atim (t)] dr,
Q

2
it follows that

|b1 (Wi (t), Um(t)7 wm(t»’ < ||vm(t) ||L°°(Q) H [wm(t)]z HH”wm(t)HH

+ %me(t)IIHII[vm(t)}mHLm(mIIwm(t)HH

by (2.4), (2.3) - .
< 24/65 v (Ollvs l[wm ) [[vo l[dom (8) ]| 22
1

+

. _ 1
5 (Ol WOl i (Ol < 24/357 + 5C] ol ~ o210

Cy

€ 1, .
[ Shum O, + himO]
e=3C1vmllw1,000,7:v5)
_ 303

1.
<5 v 1. 0,733 1w (B) 15 +5llwm(t)||ir- (6.7)
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From this inequality and (6.4)—(6.6), we infer

33
4

W (O]l + ()17 <

d 12
vl Iroller +0"T lomllfys. 0. 7vv5)

Ca
362 %12 ~2 2 2 f
4 5 ol + 72 432 o < o v B ()17, for e 1€ (0,7),

C3

Therefore, an integration over (0,t) yields

wmmm&+£nm¢m@@=wm%wmﬁ+énwAﬂ@@

< TCQHUMH%/VLOO(O,T;V(;) + 3012va||%/vlv°°(0,T;V5)”wm”%"’(o,T;Vo) + VHWOH%/O +CsT

2
< TG [sup onlwriorin| +vliml, + Co
me

~ 2 2 by (5.51)(5.53)
+ 301 Su% ||/Um||W1,oo(0’T;V5) Su% meHLQ(O,T;VD) < —+00. (68)
me me

As follows from this estimate, the sequences {wy,(-)},,cn and {Wm()},,cn are bounded in
L>(0,T;Vp) and L?(0,T; H), respectively. Hence, up to a subsequence, we can suppose that
there exist appropriate subsequences (still denoted by the suffix m) such that (see (5.54),
(5.56), and Remark 5.4)

Wy — w in L®(0,T;Vy) and b, — w in L*(0,T;H) asm — oo. (6.9)

As a result, we can pass to the limit in (6.8) as m — oo along a chosen subsequence and
deduce by the weak lower semi-continuity of the norms in L>(0,7T; V) and L?(0,T; H) that
the same estimate holds for the limit element w. Hence,

we L>®(0,T;Vy) and € L*(0,T; H). (6.10)
Moreover, in the similar spirit to the estimation like (6.7), it can be shown that

(wx(t)v(t) + ;w(t)%(t)) €H forac. tel0,T]. (6.11)

Indeed,
e (8ot e (O] 5 < (e @)+ 5 ooy (6)

1
< [lwe @)l llo(@)ll 2 ) + 5 llw®)ll e @) o2 (Ol

by (2.4)

< 2\/50T1||w(t)||VOHU(t)”VJ+Hw(t)HVo”Uﬂc(t)”H

<3/ 85 lw®llva o (@) llvs

2C

{

by (5.51)—(5.53)
< C w3, + v, < oo a.e. t([0,T]. (6.12)
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Taking this fact into account and combining it with property (6.10), we can rewrite the
equation in (3.17) in the form

(wa0),02) == (100) e 0) (0(8) (1)) + o) (v 6) + 05(0) o)
1

- 5([(7“0 +1%) (vg(t) + uls(2))] ,@)H a.e. t € [0,T] for all p € Vj.

H

Then, the regularity theory for elliptic equations (see [7]) implies that w(t) € H?(2) for
a.e. t € [0,7T] and

[ ()12 () < C (v, Q) [H%H%/o + @)1 + [lwa (t) (v(t) +u™ (1)) I
+ llw(t) (v (8) + wi(8)) I3+ 1o +17) (va () + w3 (1) ”%i} ae. t€[0,T].
Integrating this relation over [0,7] and using (6.5), (6.8), and (6.12), we see that

. % 2 by (6:5) o 12 2 A2
100 + 1) (o) + w3 ) Baozy < 20 lroll + 0T (lulfiys.e o,y + C2T)
X 2 by (612) (7T 2 2 | A2
o @ t) + weO) oy S 205 / lw®NI, (@1, + 26l ) ) dt
<207 (I oz2v) + C2 01 ) Mol 202,06,
” 2 by (612) T 2 2 A2
lwe (v8) + ' () Baozy < 40 / lwo®NI, (1@, + 26l ) ) dt
< 405 (1o o.22v) + C2 8l 2@y ) 100,70t

)2 2 18y )2 2 4T
lllZ20,mm) < 2l[vllire 0,505 T VImollv, + Cs

+ 3C12||v||%/V1>°°(O,T;V5) \w”%z(o,T;Vo),
where C is given by (5.23). This leads us to the conclusion: there exists a constant C, =
Ci(v,Q,T,dp) > 0 independent of w and u such that the following estimate

* 2
ol 202,120y < Co[lImoll, + 070 + (14 I0l3z(0,72ve) ) Molse o250
2 2
19121 0.y + NI . (6.13)

holds true and, therefore, w € L2(0,T; H%(Q2)) by (6.13) and Theorem 5.8. Thus, (6.2) is a
direct consequence of (6.13) and estimates (5.13)—(5.14), (5.38) and (5.42)—(5.43) which are
the same for the functions w and wu as it is indicated in Remark 5.5.

To end the proof, it remains to notice that the conclusion given above is valid for
any cluster pair of the sequence of Galerkin approximations {(wp,(t),um(t))},,cyn- Since
the system (3.3)—(3.5) admits a unique weak solution (see Lemma 4.1), it follows that the

convergence (6.9) takes a place for the entire sequences {w,(-)},,cn and {Wm ()}, ey O
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