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New existence conditions of homoclinic orbits for some systems of ordinary quadratic differential
equations with singular linear part are found. A realization of these conditions guarantees the
existence of chaotic attractors at 3D autonomous quadratic systems. In addition, a chaotic
behavior of solutions of these systems is determined by the 1D discrete map xn+1 = rxn ·
[exp(pxn − x2

n)]/(1 + γxn) at some values of parameters r > 0, p ∈ R, and γ ∈ (−d,∞), where
d > 0; n = 0, 1, 2, . . . . Examples of chaotic attractors are given.

Keywords : 1D discrete map; ordinary autonomous differential equations system; limit cycle;
homoclinic orbit; chaotic attractor.

1. Introduction

Chaos as a very interesting complex nonlinear phe-
nomenon has been intensively studied in the last
four decades within the science, mathematics and
engineering communities. Recently, chaos has been
found to be very useful and has great potential
in many technological disciplines, such as informa-
tion and computer sciences, power systems protec-
tion, biomedical systems analysis, flow dynamics
and liquid mixing, encryption and communications,
and so on. It is not surprising, therefore, that aca-
demic researches on chaotic dynamics has evolved

from traditional trends of analyzing and under-
standing chaos to new directions of controlling and
utilizing it.

An open question of chaos theory is: What dis-
crete processes are sources of a chaotic behavior for
continuous dynamic systems? Some answers for this
question will be given below in the present work.

Basic ideas and methods, which will be devel-
oped in our paper, rise from [Belozyorov, 2007].

We denote by R
n a real space of dimension n.

Let xT = (x1, . . . , xn) ∈ R
n be an unknown

vector, where coordinates xi = xi(t) are functions

1350105-1

http://dx.doi.org/10.1142/S0218127413501058


July 8, 2013 11:33 WSPC/S0218-1274 1350105

V. Ye. Belozyorov & S. V. Chernyshenko

of time t. Let also A = (aij), B1, . . . , Bn ∈ R
n×n

be real matrices and let the matrices B1, . . . , Bn

be symmetrical.
Consider the system of ordinary quadratic dif-

ferential equations


ẋ1(t) =
n∑

j=1

a1jxj(t) + xT (t)B1x(t) ≡ f1(x(t)),

...

ẋn(t) =
n∑

j=1

anjxj(t) + xT (t)Bnx(t) ≡ fn(x(t))

(1)

of order n with the vector of initial values xT (0) =
(x10, . . . , xn0).

It is well known that the linearization method
is a basic method for the research in nonlinear sys-
tems. In [Belozyorov, 2007] another method for the
research of system (1) was offered. The essence
of this method consists of the following. First the
system 


ẋ1(t) = xT (t)B1x(t),

...

ẋn(t) = xT (t)Bnx(t)

(2)

is investigated. After that, an influence of elements∑
aijxj on the solutions of system (2) was exam-

ined. Namely, with this approach, new results on
the boundedness of the solutions of system (1) were
derived. In particular, for new conditions of the
existence of homoclinic orbits in system (1), the
mentioned approach has been used in [Belozyorov,
2011a].

Today the most known results devoted to
chaotic dynamics in autonomous 3D systems of dif-
ferential equations are based on the supposition of
the existence in these systems of either homoclinic
or heteroclinic orbits, and the use of Shilnikov The-
orem (see, for example, [Li et al., 2004; Qi et al.,
2008; Shang & Han, 2005; Wang, 2009; Zhou et al.,
2004; Zheng & Chen, 2006; Zhou & Chen, 2006],
and many references cited therein).

We especially remark on [Zhou & Chen, 2006]
in which by the undetermined coefficients method,
an existence of heteroclinic orbit (it means the exis-
tence of chaotic dynamics) was rigorously proved for
the famous Lorenz system




ẋ(t) = a(y(t) − x(t)),

ẏ(t) = cx(t) − x(t)z(t) − y(t),

ż(t) = x(t)y(t) − bz(t).

(3)

(Here a = 10, b = 8/3, c = 28.)
Note that in all indicated works it was assumed

that the Jacobian matrix in any equilibrium point
was not singular. The first result, in which the
last condition was ignored (the Jacobian matrix is
assumed to be singular), was represented in [Chen
et al., 2009]. However, the conditions guaranteeing
the existence of the homoclinic orbit connected at
some equilibrium point in [Chen et al., 2009] were
not indicated. Its presence was simple postulated.

In the present paper, for the general quadratic
systems with singular linear part, constructive con-
ditions for the existence of homoclinic orbits are
seen. Examples of new chaotic attractors are shown.
In addition, the connection of these conditions is
determined with the existence of an 1D discrete
map, generating a chaotic dynamics in the consid-
ered autonomous systems of differential equations.

It should be mentioned that for general
quadratic systems 1D implicit discrete maps were
built in [Belozyorov, 2011b, 2012]. In the present
paper, the 1D discrete map generating chaos in the
quadratic 3D system (1) is built in an explicit form.

Let us introduce some notations and defini-
tions. Let Q ⊂ R

n be a compact (bounded and
closed) set containing the origin. Symbol x(t,x0)
denotes the solution (the trajectory) of system (1)
satisfying the initial condition x(0,x0) = x0. Fur-
ther, we denote the distance between any vector xk

and Q by d(xk, Q) = infx∈Q ‖xk − x‖.
Definition 1 [Belozyorov, 2011a]. If there exists a
compact set Q ⊂ R

n such that

∀x0 ∈ R
n, lim

t→∞ d(x(t,x0), Q) = 0,

then we call Q a globally attractive set of sys-
tem (1). If

∀x0 ∈ P ⊂ R
n ⇒ x(t,x0) ⊆ P, ∀ t ≥ 0,

then P is called a positive invariant set of sys-
tem (1).

Definition 2 [Zhou & Chen, 2006]. A bounded tra-
jectory x(t,x0) of system (1) is called a homoclinic
orbit if the trajectory converges to the same equi-
librium point as t → ±∞.
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Let xe ∈ R
n be an equilibrium point of sys-

tem (1). Denote by

D(xe) =
(

∂fi(x)
∂xj

)
(xe) ∈ R

n×n

the Jacobian matrix of the function f(x) =
(f1(x), . . . , fn(x))T in the equilibrium point xe;
i, j = 1, . . . , n.

Theorem 1 (The Shilnikov Homoclinic Theorem)
[Zhou & Chen, 2006, Theorem 2.2]. Let n = 3,
and let α, β ± iγ be the eigenvalues of the matrix
D(xe), where α, β, γ ∈ R, α · β < 0, and γ �= 0 (the
equilibrium point is a saddle focus).

Suppose that the following conditions are
fulfilled:

(i) |α| > |β|;
(ii) there exists a homoclinic orbit connected at xe.

Then:

(i) in a neighborhood of the homoclinic orbit there
is a countable number of Smale horseshoes in
discrete dynamics of system (1);

(ii) for any sufficiently small C1-perturbation
g(x) = (g1(x), . . . , gn(x))T of the function
f(x) in system (1) the perturbed system ẋ(t) =
g(x) ∈ R

n has at least a finite number of Smale
horseshoes in the discrete dynamic defined near
the homoclinic orbit ;

(iii) both the original system (1) and the perturbed
system ẋ(t) = g(x) have the horseshoe type of
chaos.

Let n = 3, and let ρ ± iω, 0 be the eigenvalues
of the matrix D(xe). In [Chen et al., 2009], we see
with the help of suitable transformations to reduce
system (1) to the form


ẋ(t)

ẏ(t)

ż(t)


 =




ρ −ω 0

ω ρ 0

0 0 0


 ·




x

y

z




+




axz + byz + o(3)

ayz + bxz + o(3)

cz2 + o(3)


. (4)

Theorem 2 [Chen et al., 2009, Theorem 2.1]. Let
in system (4) ρ · ω �= 0.

Suppose that the following conditions are
fulfilled:

(i) c · ρ < 0, c · ω > 0;
(ii) there exists a homoclinic orbit connected at xe.

Then:

(i) in a neighborhood of the homoclinic orbit there
is a countable number of Smale horseshoes in
discrete dynamics of system (4);

(ii) system (4) possesses the horseshoe type of
chaos.

The stable and unstable manifolds W
s(e0) and

W
u(e0) for some equilibrium point e0 [Kuznetsov,

1998] may be defined as

W
s(e0) :=

{
x0 ∈ R

n
∣∣∣ lim

t→∞x(t,x0) = e0

}
,

W
u(e0) :=

{
x0 ∈ R

n
∣∣∣ lim

t→−∞x(t,x0) = e0

}
.

Let A be a linear operator, a matrix of which in
some base of the space R

n coincides with the matrix
A of system (1). Assume that e0 = 0. Denote by
Ts, Tu and Tc invariant with respect to the opera-
tor A subspaces in R

n such that a spectrum of the
restriction of A|Ts consists of eigenvalues with neg-
ative real parts; the spectrum of the restriction of
A|Tu consists of eigenvalues with positive real parts,
and the spectrum of the restriction of A|Tc consists
of eigenvalues with zero real parts.

Theorem 3 (The Hadamard–Perron Theorem)
[Kuznetsov, 1998]. Let f(x) = (f1(x), . . . , fn(x))T

be a Cr-differentiable vector field with the hyperbolic
equilibrium point 0 and the linear part Ax in 0. Let
φt be a flow of system (1). Then system (1) has two
Cr-differentiable invariant with respect to the flow
φt manifolds W

s(0) and W
u(0) passing through 0

and touching 0 at spaces Ts and Tu respectively. The
solutions with initial values at Ws(0)(Wu(0)) expo-
nentially tends to 0 at t → ∞(t → −∞). Besides,
system (1 ) has third Cr−1-differentiable invariant
with respect to the flow φt manifold W

c(0) passing
through 0 and touching 0 at space Tc.

2. Triangular Systems

Consider the homogeneous system (2) of the
quadratic differential equations with the vector of
initial values xT (0).

Note that in system (2) any quadratic form can
be uniquely presented as the sum

xT Bi+1x = U1,i+1(x1, . . . , xi) + U2,i+1(x1, . . . , xn),
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where

U1,i+1(x1, . . . , xi) = (x1, . . . , xi, 0, . . . , 0)

×Bi+1(x1, . . . , xi, 0, . . . , 0)T ,

U2,i+1(x1, . . . , xn) = xT Bi+1x − U1,i+1,

are quadratic forms depending on i and n vari-
ables, and U11(x0) ≡ 0, U21(x1, . . . , xn) = xT B1x;
i = 1, . . . , n − 1.

Let us introduce for system (2) new variable
y(t) = (y1(t), . . . , yn(t))T defined by the formula
x(t) = Sy(t), where S ∈ R

n×n is a nonsingular
matrix. Then, we obtain


ẏ1(t)

...

ẏn(t)


 = S−1




(Sy(t))T B1(Sy(t))
...

(Sy(t))T Bn(Sy(t))


. (5)

(Thus, the vector of initial data is y(0) = S−1x(0).)
Assume that we can find an invertible matrix

S such that in variables y1, . . . , yn system (5) takes
the form

ẏ(t) =




ẏ1(t)
...

ẏn(t)




= W(y(t))

=




U21(y1(t), . . . , yn(t))
...

U2n(y1(t), . . . , yn(t))


. (6)

(We mark that the operator W : R
n → R

n has
i-dimension invariant subspaces Yi ⊂ R

n consisting
of vectors (∗, . . . , ∗︸ ︷︷ ︸

i

, 0, . . . , 0)T ; i = 1, . . . , n − 1.)

Definition 3. System (6) is called a triangular
system.

For example, if n = 2, then (6) has the form{
ẏ1(t) = a11y

2
1 + 2a12y1y2 + a22y

2
2,

ẏ2(t) = 2b12y1y2 + b22y
2
2;

(7)

if n = 3, then (6) has the form




ẏ1(t) = a11y
2
1 + 2a12y1y2 + a22y

2
2 + 2a13y1y3

+ 2a23y2y3 + a33y
2
3,

ẏ2(t) = 2b12y1y2 + b22y
2
2 + 2b13y1y3

+ 2b23y2y3 + b33y
2
3,

ẏ3(t) = 2c13y1y3 + 2c23y2y3 + c33y
2
3.

Now we represent the construction method of
the triangulation system (6).

The last equation of system (6) has the form

ẏn(t) = yT Py

= 2c1ny1yn + · · · + 2cn−1,nyn−1yn

+ cnny2
n. (8)

The symmetric matrix P of this equation is

P =




0 . . . 0 c1n

...
. . .

...
...

0 . . . 0 cn−1,n

c1n . . . cn−1,n cnn


.

Denote by f1, . . . , fn elements of the last row
of the matrix detS ·S−1. Then the last equation of
system (5) is

ẏn(t) = (Sy)T (f1B1 + · · · + fnBn)
Sy

det S
.

The symmetrical matrix of this equation is P1 =
ST (f1B1 + · · · + fnBn)S/det S. It is clear that
P = P1. Let s1 = (s11, . . . , sn1)T , . . . , sn−1 =
(s1,n−1, . . . , sn,n−1)T be the first n columns of the
matrix S. Using the definition of inverse matrix, we
notice that f1, . . . , fn are homogeneous polynomials
of degree n− 1 with respect to unknown scalar ele-
ments s11, . . . , sn1, . . . , s1,n−1, . . . , sn,n−1, which are
arranged in the first n− 1 columns of the matrix S.
Then from the equation P = P1, it follows that

sT
i (f1B1 + · · · + fnBn)sj = 0,

i, j ∈ {1, . . . , n − 1}, i < j, (9)

where system (9) consist of n(n−1)/2 homogeneous
equations of degree 2 + n − 1 = n + 1 with respect
to n(n−1) unknowns s11, . . . , sn−1,n under the con-
dition det S �= 0.
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Let us introduce the matrix

(s1, . . . , sn−1)

=


 In−1

−−−−−
v1, . . . , vn−1


 · D ∈ R

n×(n−1), (10)

where In−1 is the identity matrix of order n − 1;
the matrix D ∈ R

(n−1)×(n−1) is invertible and
variables v1, . . . , vn−1 depend on elements sij ; i =
1, . . . , n; j = 1, . . . , n − 1. Then system (9) can be
presented in the following form

detD · DT


In−1

| v1

| ...

| vn−1




× (−v1B1 + · · · + (−1)n−1vn−1Bn−1

+ (−1)nBn)


 In−1

−−−−−
v1, . . . , vn−1


 · D = 0.

The last system is equivalent to the system

N(v1, . . . , vn−1)

≡


In−1

| v1

| ...

| vn−1




× (−v1B1 + · · · + (−1)n−1vn−1Bn−1

+ (−1)nBn)


 In−1

−−−−−
v1, . . . , vn−1




= 0 (11)

consisting of n(n − 1)/2 equations with respect to
n − 1 unknowns v1, . . . , vn−1. (It is clear that by
virtue of the symmetry of matrices B1, . . . , Bn the
matrix N(v1, . . . , vn−1) ∈ R

(n−1)×(n−1) is also sym-
metrical.) In total, we notice that system (11) has a
solution only for n = 2. If n > 2, then some restric-
tions on matrices B1, . . . , Bn should be realized for
the solvability of this system.

Thus, the construction method of system (6) is
the following.

(1) Solve the system of Eq. (11).
(2) Find matrix (s1, . . . , sn−1) from (10), where

D ∈ R
(n−1)×(n−1) is any invertible matrix.

(3) Compose the matrix S = (s1, . . . , sn−1, sn) ∈
R

n×n, where the vector sn satisfies the condi-
tion det S �= 0.

(4) Build system (5).
(5) Assume in system (5) yn = 0 and repeat items

1–4 for a new derived system consisting of
n−1 equations with respect to n−1 unknowns
y1, . . . , yn−1.

We formally calculate all first derivatives with
respect to time for functions z1 = y1/yn, . . . ,
zn−1 = yn−1/yn of system (6). Then, we obtain




ż1(t)
...

żn−1(t)

ẏn(t)


 =




ẏ1yn − y1ẏn

y2
n

≡ G1(z1(t), . . . , zn−1(t))yn(t)

...

ẏn−1yn − yn−1ẏn

y2
n

≡ Gn−1(z1(t), . . . , zn−1(t))yn(t)

Gn(z1(t), . . . , zn−1(t))y2
n(t)




, (12)

where Gi(z1, . . . , zn−1) is a nonhomogeneous
quadratic function and Gn(z1, . . . , zn−1) is a nonho-
mogeneous linear function of variables z1, . . . , zn−1;
i = 1, . . . , n − 1.

Let us introduce the function z, linear with
respect to z1, . . . , zn−1, by the formula

z = 2c1nz1 + · · · + 2cn−1,nzn−1,

where 2c1n, . . . , 2cn−1,n are the coefficients of
Eq. (8).

Taking into account formula (12), we also com-
pose the quadratic function

G(z1, . . . , zn−1)

≡ 2c1nG1(z1, . . . , zn−1)

+ · · · + 2cn−1,nGn−1(z1, . . . , zn−1),

and the quadratic form

hn−1(y) = y2
nG(z1, . . . , zn−1).
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Let Yi be a linear subspace in R
n of dimension

i, which is formed by all vectors yi = (y1, . . . , yi,
0, . . . , 0)T ; i = 1, . . . , n.

Construct the chain of inclusions: 0 = Y0 ⊂
Y1 ⊂ · · · ⊂ Yn−1 ⊂ Yn = R

n.
Let Wi = W|Yi be a restriction of operator

W on the subspace Yi. It is easily checked that
W(Yi) = Yi; i = 1, . . . , n.

Introduce the following triangular systems:

ẏi(t) =




ẏ1(t)
...

ẏi(t)




= Wi(yi(t))

=




U21(y1(t), . . . , yi(t), 0, . . . , 0)
...

U2i(y1(t), . . . , yi(t), 0, . . . , 0)


;

i = 1, . . . , n. (13)

(It is obvious that at i = n, system (13) coincides
with system (6).)

By analogy to system (6), we will introduce
forms hi−1(yi) for systems (13); i = 2, . . . , n. (Here
hn−1(yn) ≡ hn−1(y).)

Theorem 4 [Belozyorov, 2011a, Theorem 3]. Let
n > 1. Assume that for the triangular system (6 )
yn0 �= 0, and

(i) ∀ i ∈ {2, . . . , n} the quadratic form hi−1(yi) is
negative definite;

(ii) for i = 2 [it will be system (7 )] a11(a11−2b12) <
0.

Then any trajectory y(t,y0) of system (6) is a
homoclinic orbit and the equilibrium 0 is a unique
globally attractive set of this system.

Suppose that there exists a linear invertible
transformation S ∈ R

n×n reducing system (2) to
system (6). Applying the transformation S to sys-
tem (1), we have

ẏ(t) =




ẏ1(t)
...

ẏn(t)




= Dy(t) +




U21(y1(t), . . . , yn(t))
...

U2n(y1(t), . . . , yn(t))


, (14)

where D = S−1AS y(0) = S−1x(0).

Theorem 5 [Belozyorov, 2011a, Theorem 4]. Let
n > 1. Assume that for the triangular system (6)
conditions (i ) and (ii ) of Theorem 4 hold. If either
1D space Y1 is not an eigenvector of the matrix D
or y(0) �∈ Y1, then for any initial values, all solu-
tions of system (14) are bounded.

3. Case of Singular Linear Part
in System (1)

Let n = 3. We will take for simplicity that y1 = x,
y2 = y, y3 = z. Suppose that in these variables,
system (14) has


ẋ(t)

ẏ(t)

ż(t)


 = D ·




x

y

z


 +




a11x
2 + 2a12xy + a22y

2 + 2a13xz + 2a23yz + a33z
2

2b12xy + b22y
2 + 2b13xz + 2b23yz + b33z

2

2c13xz + 2c23yz + c33z
2


, (15)

where λ1 = µ, λ2,3 = ρ ± iω, i =
√−1 are eigenval-

ues of the matrix D and ρ · ω �= 0, µ · ρ ≤ 0 (we
suppose for definiteness µ ≤ 0 and ρ > 0).

Introduce the quadratic forms:

f(x, y) = b12(a11 − 2b12)x2

+ b12(2a12 − b22)xy

+ b12a22y
2

and

g(x, y, z)

= c13(a11 − 2c13)x2 + 2(c13a12 + c23b12

− 2c13c23)xy + (c13a22 + c23b22 − 2c2
23)y

2

+ (2c13a13 + 2c23b13 − c13c33)xz

+ (2c13a23 + 2c23b23 − c23c33)yz

+ (c13a33 + c23b33)z2.
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Theorem 6. Let the following conditions be valid
for system (15 ):

(i) the quadratic forms f(x, y) and g(x, y, z) are
negative definite;

(ii) a11(a11 − 2b12) < 0;
(iii) the vector (α, 0, 0)T , α �= 0, is not an eigenvec-

tor of the matrix D.

Then in system (15 ) either there is a limit cycle
or a limit torus or a complex irregular dynamics
takes place.

Proof. Note that the conditions (i)–(iii) of Theo-
rem 6 are the conditions of Theorem 5 guaranteeing
boundedness of the solutions of system (15).

(1) With the help of suitable real linear transfor-
mations, we reduce system (15) to the form


ẋ(t)

ẏ(t)

ż(t)


 =




p11 p12 0

p21 p22 0

0 0 µ


 ·




x

y

z




+




f1(x, y, z)

f2(x, y, z)

f3(x, y, z)


, (16)

where for simplicity we left old designations of
the new variables x, y, z; f1(x, y, z), f2(x, y, z),
f3(x, y, z) are quadratic forms.

(2) Let us calculate the Lyapunov’s exponent Λ
for a real function f(t) in accordance with the
known formula [Belozyorov, 2011b]:

Λ[f ] = lim
t→∞

1
t

ln
∣∣∣∣ f(t)
f(t0)

∣∣∣∣ . (17)

Then by virtue of boundedness of the solutions
x(t), y(t), z(t) of system (16) for any x0, y0, and any
z0 (see Theorem 5), we get Λ[x(t)] ≤ 0, Λ[y(t)] ≤ 0,
and Λ[z(t)] ≤ 0.

We take advantage of the following properties
of Lyapunov’s exponents:

(c1) if the function f1(t) has a strict Lyapunov’s
exponent Λ[f1(t)], then Λ[f1(t) · f2(t)] =
Λ[f1(t)] + Λ[f2(t)];

(c2) if m ≥ 0, then Λ[tm] = 0;
(c3) if Λ[f(t)] < 0, then Λ[

∫ ∞
t f(τ)dτ ] ≤ Λ[f(t)];

(c4) Λ[f1(t) + f2(t)] ≤ max(Λ[f1(t)],Λ[f2(t)]);
(c5) Λ[d · f(t)] = Λ[f(t)](d �= 0).

We write the last equation of system (16) in the
integral form

z(t) = z0 exp(µt)

+
∫ t

0
exp(µ(t − τ)) · f3(x(τ), y(τ), z(τ))dτ

≡ z1(t) + z2(t), (t > τ), (18)

where z1(t) = z0 exp(µt), z2(t) = z(t)− z1(t). Then
from properties (c1)–(c5) and boundedness of the
solutions x(t), y(t), z(t) it follows that at µ = 0 we
have Λ[z(t)] = 0.

Let µ < 0. Then from (c5) it follows that
Λ[z1(t)] = µ. From (c1) and (c3) we have

Λ[exp (µ(t − τ)) · f3(x(τ), y(τ), z(τ))]

= Λ[exp µt] + Λ[f3(x(τ), y(τ), z(τ))]

= µ + 0 = µ

and, therefore, Λ[z2(t)] ≤ µ + δ, where δ ≤ 0. Thus,
from (c4) we have Λ[z(t)] = Λ[z1(t) + z2(t)] =
max(µ, µ + δ) = µ < 0.

Under the conditions of Theorem 6 for any
eigenvalues of the Jacobi matrix at any equilibrium,
Lyapunov’s exponents of system (15) are defined (to
within permutations) by four possibilities: (0, 0, 0);
(−, 0, 0); (−,−, 0); (−,−,−).

Trajectories, for which Lyapunov’s exponents
(Λ[x(t)],Λ[y(t)],Λ[z(t)]) adopt one of the val-
ues (−,−, 0), (−, 0,−) or (0,−,−), are limit
cycles. Trajectories, for which Lyapunov’s expo-
nents (Λ[x(t)],Λ[y(t)],Λ[z(t)]) adopt one of the val-
ues (−, 0, 0), (0,−, 0) or (0, 0,−), are limit tori. If
(Λ[x(t)],Λ[y(t)],Λ[z(t)]) = (0, 0, 0) then in system
(15) a complex irregular (chaotic) dynamics can
arise. �

Theorem 7. Assume that for system (15) all con-
ditions of Theorem 6 are fulfilled. We also suppose
that all nonzero equilibrium points of this system are
either by saddle nodes or saddle focuses (including
singular equilibrium points). Then in the system
there exist homoclinic or heteroclinic orbits.

Proof

(1) Let Wu(0) be 2D unstable and Wc(0) be 1D
central manifolds of point O(0, 0, 0) (if µ �= 0,
then Wc(0) must be replaced by 1D stable man-
ifold Ws(0)). Then, by virtue of boundedness of
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the solutions of system (15), the part trajecto-
ries S1 ⊂ Wu(0) (Wu(0) − S1 = S2 �= ∅) are
attracted to some equilibrium points of system
(15); among them, it can be the equilibrium
point (0, 0, 0). It means the existence of hetero-
clinic or homoclinic orbits.

(2) Assume that any trajectory of the set S2 ⊂
Wu(0) such that S1 ∩ S2 = ∅ is not attracted to
any nonzero equilibrium points. Then, by virtue
of boundedness of solutions of system (15), the
trajectories of the set S2 ⊂ Wu(0) must be
attracted to some limit attractive set (cycle or
torus) L.

(3) Suppose µ = 0. It is known that in a small
neighborhood of origin the solutions of system
(15) have the form: x(t) = exp(ρt)(x0 cos(ωt)−
y0 sin(ωt)), y(t) = exp(ρt)(x0 sin(ωt) + y0 cos×
(ωt)), z(t) = z0/(1 − c33z0t). Let c33z0 < 0.
Then the central manifolds Wc(0) near the
point O is topologically equivalent to a sta-
ble manifold. We change the sign of time to
opposite. Then the attractor L becomes unsta-
ble, but the trajectory Wc(0) is attracted to
this attractor, which is a contradiction. Conse-
quently, Wu(0) ∩ Wc(0) �= 0 and the trajectory
Wc(0) is attracted to point O. Thus, in system
(15) there exists a homoclinic orbit connected
at point O.

(4) Let µ �= 0. Then the solution z(t) = z0/(1 −
c33z0t) must be replaced by the solution z(t) =
z0 exp(µt). Now we repeat all reasonings of
item 3. �

4. Existence of Chaotic Dynamics
in System (15)

Let us consider that in system (15) the matrix D
has the form:

D =




d11 d12 d13

d21 d22 d23

0 0 d33


. (19)

Let ρ∓ iω, d33 be a spectrum of the matrix D.
We will consider that ρ > 0, ω > 0, d33 ≤ 0. Denote
by x0, y0 and z0 the initial values for system (15).
Besides, we suppose that x0 = y0 = 0. Transform the
expression c13x(t) + c23y(t) in the following way:

c13x(t) + c23y(t)

= z(t)
(

c13
x(t)
z(t)

+ c23
y(t)
z(t)

)

= z(t)
∫ t

t0

[
c13

(
ẋ(τ)
z(τ)

)
+ c23

(
ẏ(τ)
z(τ)

)]
dτ

= z(t)
∫ t

t0

[
h(x(τ), y(τ), z(τ))

z2(τ)

]
dτ

+ z(t)
∫ t

t0

z(τ)
[
g(x(τ), y(τ), z(τ))

z2(τ)

]
dτ,

(20)

where

h(x, y, z) = 2[(d11 − d33)c13 + d21c23]xz

+ 2[d12c13 + (d22 − d33)c23]yz

+ 2[d13c13 + d23c23]z2

and g(x, y, z) as in Sec. 3 is a quadratic form of
variables x, y, z.

We note the symmetric matrices H and z ·G of
the forms h(x, y, z) and zg(x, y, z) as:

H =




0 0 h1

0 0 h2

h1 h2 h3


, z · G = z ·




g1 g2 g3

g2 g4 g5

g3 g5 g6


.

Let z > 0. Note the conditions of a negative
definiteness of the matrix H + z · G. It is simple to
check that by virtue of structure matrix H, the first
two conditions (g1 < 0, g1g4−g2

2 > 0) coincide with
the first two conditions of negative definiteness of
the matrix G. Third condition has the form:

det(H + z · G)

= z[(det G)z2 + v1z + v2]

≡ z[(det G)z2 + (g1g4h3 − 2g1g5h2 + 2g2g5h1

− g2
2h3 + 2g2g3h2 − 2g3g4h1)z

+ (−g4h
2
1 + 2g2h1h2 − g1h

2
2)] < 0.

By virtue of the negative definiteness of matrix G,
we have det G < 0. Therefore, in order that the con-
dition det(H + z ·G) < 0 is met, it is necessary and
sufficient that discriminant Disc ≡ v2

1 − 4v2 detG
of the quadratic polynomial (det G)z2 + v1z + v2 is
negative.

The function c13x(t) + c23y(t) explicitly does
not depend on z(t). Therefore, if z ≤ 0, then the
condition Disc < 0 is again necessary and sufficient
in order that (detG)z2 + v1z + v2 < 0.

Theorem 7 does not give an answer for the
following question: What orbits (homoclinic or
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heteroclinic) exist for the concrete system (15)?
Theorem 8 removes this omission.

Theorem 8. Assume that for system (15) all con-
ditions of Theorem 7 are valid. We also suppose
that the matrix D has the form (19). By (x∗

i , y
∗
i , z

∗
i )

denote all equilibrium points of system (15) for
which z∗i = 0; i = 1, . . . ,m. Suppose that eigen-
values of the Jacobian matrix of system (15) at
point (x∗

i , y
∗
i , 0) equal ai ± bi

√−1, ci, where ai �= 0,
aici ≤ 0. Then ∀ i ∈ {1, . . . ,m} there exists a homo-
clinic orbit connected at point (x∗

i , y
∗
i , 0) which is

situated either in half-space z ≥ 0 or half-space
z ≤ 0.

Proof. Find the solution z(t) of the third equation
of system (15) with matrix D (19):

ż(t) = c33z
2(t) + [c13x(t) + c23y(t) + d33]z(t).

(21)

This solution has the form

z(t) =
z0 exp(q(t))

1 − c33z0

∫ t

t0

exp(q(τ))dτ

, (22)

where q(t) =
∫ t
t0

[c13x(τ) + c23y(τ) + d33]dτ and
∀ t > 0

∫ t
t0

exp(q(τ))dτ > 0.
From (22), it follows that the existence of the

homoclinic orbit may be ensured by the condi-
tion limt→∞ c13x(t) + c23y(t) ≤ 0. In order that
this condition was realized, it is sufficient that
det(H + z ·G) < 0. The last inequality can be con-
firmed by the obvious equality:

lim
z→∞det(H + z · G)

= lim
z→∞ z[(det G)z2 + v1z + v2] = −∞.

Since d33 ≤ 0, then from (20) and (22), it fol-
lows that

0 ≤ lim
t→∞

∫ t

t0

exp(q(τ))dτ < ∞

and therefore, limt→∞ z(t) = 0.
Let W

s(x∗
i , y

∗
i , 0) (Wu(x∗

i , y
∗
i , 0)) be a stable

(unstable) manifold of the point (x∗
i , y

∗
i , 0); i ∈

1, . . . ,m. Assume that initial values (x0, y0, z0) ∈
W

u(x∗
i , y

∗
i , 0). We derived the following result:

limt→∞(x(t), y(t), z(t)) = (x∗
i , y

∗
i , 0).

Now we change t → −t. According to The-
orem 5, all solutions of system (15) will remain
bounded. Then, we have limt→−∞(x(t), y(t), z(t)) =
(x∗

i , y
∗
i , 0). Therefore, (x0, y0, z0) ∈ W

s(x∗
i , y

∗
i , 0). It

means the existence of the homoclinic orbit con-
nected at (x∗

i , y
∗
i , 0); i = 1, . . . ,m.

Let d33 = 0. Then for the proof of the
existence of homoclinic orbits, it is possible to
use item 3 of Theorem 7. In this case near the
equilibrium (x∗

i , y
∗
i , 0) the variety W

s(x∗
i , y

∗
i , 0) (or

W
u(x∗

i , y
∗
i , 0)) must be replaced by the central vari-

ety W
c(x∗

i , y
∗
i , 0), i ∈ {1, . . . ,m}.

The location of homoclinic orbits is determined
by Eq. (21) and Lemma 1 [Belozyorov, 2011a]. �

Theorem 1 or 2 guarantees the existence of
chaotic dynamics in system (1) at n = 3. It is
easily checked that condition (i) of Theorem 2 can
be fulfilled by replacements of variables (x, y, z) →
(x,±y,±z). Then Theorem 8 jointly with The-
orem 1 or 2 allows to consider the construc-
tion method of a discrete map generating chaotic
dynamics in system (15).

Under the conditions of Theorem 8, system (15)
has to have a homoclinic orbit.

Introduce Poincare’s section P defined by equa-
tion c13x + c23y = 0. Denote by t0, an initial
moment such that c13x(t0) + c23y(t0) = 0 ((x(t0),
y(t0), z(t0)) ∈ P ). Let t1 = t0 + T0 be a next
moment of the trajectory (x(t), y(t), z(t)) passing
by plane P . Then from (22) it follows that

z(t0 + T0) =
z(t0) exp(q(t0 + T0))

1 − c33z(t0)
∫ t0+T0

t0

exp(q(τ))dτ

.

(23)

In [Belozyorov, 2011a] it is shown that functions
x(t), y(t), z(t) and x(t)/z(t), y(t)/z(t) are bounded.
Therefore, by virtue of ∀ t > 0 z(t) �= 0, we can
introduce constants

δ0 =
∫ t0+T0

t0

[
h(x(τ), y(τ), z(τ))

z2(τ)

]
dτ,

ν0 =
∫ t0+T0

t0

[
g(x(τ), y(τ), z(τ))

z2(τ)

]
dτ < 0.

Taking into account the known theorem about
the mean value of a definite integral from (20)
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we get

c13x(t0 + T0) + c23y(t0 + T0)

= δ0z(t0 + T0) + ν0z(t0 + T0) · z(τ),

where τ ∈ (t0, t0 + T0).
Assume that in Theorem 8 bi �= 0; i = 1, . . . ,

m. Then functions x(t) and y(t) will oscillate in
the neighborhood of equilibrium (x∗

i , y
∗
i , 0); i =

1, . . . ,m. Therefore, the function c13x(t) + c23y(t)
(and it means function z(t)) will also oscillate.
Hence, we can introduce the designations: t1 = t0 +
T0, . . . , tk = tk−1 + Tk−1, zk = z(tk), and

δk =
∫ tk+Tk

tk

[
h(x(τ), y(τ), z(τ))

z2(τ)

]
dτ,

νk =
∫ tk+Tk

tk

[
g(x(τ), y(τ), z(τ))

z2(τ)

]
dτ

< 0, k = 1, 2, . . . .

Then there exists a neighborhood of equilib-
rium point (x∗, y∗, 0) in which formula (23) may be
presented in the form

zk+1 =
zk exp(d33Tk + δkTkzk + νkTkz

2
k)

1 − c33zk

∫ Tk

0
exp(q(ξ))dξ

, νk < 0.

(Here the denominator is a positive bounded mag-
nitude.)

Assume
√−νkTkzk = wk, pk = δkTk/

√−νkTk,
and

γk = −
c33

∫ Tk

0
exp(q(ξ))dξ

√−νkTk
,

rk =
exp(d33Tk)√−νkTk

, k = 0, 1, . . . .

In some neighborhood of the homoclinic orbit, we
can consider that Tk ≈ T > 0, rk ≈ r > 0, γk ≈ γ,
and pk ≈ p. Then, we derive the new discrete model

wk+1 = α(wk) ≡ rwk exp(pwk − w2
k)

1 + γwk
,

k = 0, 1, . . . , (24)

which describes the chaotic behavior of systems
(15), at the defined values r > 0, γ ∈ (−d,∞), and
p ∈ R. The number d > 0 must be chosen so that for
any integer non-negative k, 1+γwk > 0. (It is easily
checked that by virtue of the multiplier exp(−w2

k)

in formula (24) the positive sequence w0, w1, w2, . . .
is bounded.)

Theorem 9. If p ≥ 0 and γ ≥ 0, then there exists
r > 0 such that the discrete map (24) is chaotic.

Proof. Introduce the 1D real map

α(v) =
rv exp(pv − v2)

1 + γv
, v ∈ V = [0,∞).

Let r > 0, p > 0, and γ > 0. Then roots of the
equation α′(v) = 0 are determined by the equation
2γv3 +(2−pγ)v2−pv−1 = 0. The known Theorem
of Descartes about the number of positive roots of
polynomial asserts that there exists only one posi-
tive root v∗ of this equation. Since α(v) ≥ 0 on the
interval [0,∞), and α′(v∗−δ) > 0, and α′(v∗+δ) < 0
for a small δ > 0, then the root v∗ is a unique max-
imum of the function α(v) on this interval. Thus,
the function α(v) will be nonmonotone and uni-
modal on the interval [0,∞): the interval [0, v∗) is
an increasing interval and the interval (v∗,∞) is a
decreasing interval.

By definition, take W = [0, 1]. Let T : V → W

be a continuous map given by the formula w =
(2/π) · arctan v. Since limv→∞(2/π) · arctan v = 1,
then we can consider that T is a homeomorphism
and T(V) = W, T−1(W) = V.

By

φ(w) = T−1(α(T(w)))

≡ 2
π

arctan


tan

πw

2
· r

1 + γ tan
πw

2

· exp
(
p · tan πw

2
− tan2 πw

2

) 
 (25)

define the continuous conjugate to α mapping φ :
W → W [Crownover, 1995].

(a) Density of periodic points. It is clear that the
inverse mapping φ−1(w) has two branches: φ−1

1 (w)
and φ−1

2 (w), where each of the mappings φ−1
1 (w)

and φ−1
2 (w) is invertible.

Define the function Φ : W → W by the rule

Φ(w) = φ−1
i1

(φ−1
i2

(. . . (φ−1
ik

(w)))), k = 2, 3, . . .

where either ik = 1 or ik = 2. It is clear that the
mapping Φ(w) is monotonical.
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The mapping Φ(w) has at least one fixed
point w∗. It is known that the fixed point w∗ of
the mapping Φ(w) corresponds to a fixed point w∗∗
of the mapping φ(k)(w) = φ(φ(. . . φ(w))). The point
w∗∗ of the mapping φ(k)(w) corresponds to either a
fixed point or a m-cycle of the mapping φ(w). If
w∗∗ is a fixed point of φ(w) then it is possible only
at i1 = i2. Since it is possible to take any inte-
ger k and arbitrarily choose numbers i1, i2 from
1 to 2, then from the condition φ−1

1 (φ−1
2 (w)) �=

φ−1
2 (φ−1

1 (w)) it follows that the nonmonotone func-
tion φ(w) can have any number of cycles of differ-
ent multiples and an uncountable set of nonperiodic
trajectories.

According to Sharkovsky’s Theorem [Crown-
over, 1995] a cycle of period 3 implies cycles of all
periods. Thus, in system wi+1 = φ(wi) there exist
all cycles with period 2i, i = 0, 1, 2, . . . . Accord-
ing to Singer’s Theorem [Crownover, 1995] in the
discrete system wi+1 = φ(wi), i = 0, 1, 2, . . . , at
any n and some values of parameters r = rn,
p = pn, γ = γn there are unstable cycles of period
2i, i = 0, . . . , n−1, and one stable cycle of period 2n.
If r = r∞, p = p∞, and γ = γ∞, where r∞, p∞, and
γ∞ are parameters at which there are 3-cycles in
process (24), then mapping φ(w) has a semi-stable
trajectory S in any neighborhood of any point of
this trajectory, where lie points of a countable set
of unstable cycles of all periods 2i, i = 0, 1, 2, . . . .
Therefore, a set of all periodic points is density in
W. (Any point of S with given accuracy can be
approximated by some periodic point.)

(b)Transitivity. In [Belozyorov, 2012] it is shown
that the function α0(v) = rv exp(−v), v ∈ [0,∞), is
chaotic. Introduce the homeomorphism H : V → V

under the formula H(v) = 2v2.
Define the function q : V → V by the formula

q(v) = H−1(α0(H(v)))

=
√

rv · exp(−v2).

It is clear that functions α0(v) and q(v) are contin-
uous conjugate with respect to the map H. Thus, if
the function α0(v) is chaotic, then the function q(v)
is also chaotic.

It is obvious that ∀ v ∈ V, we have

α(v) = rv exp(−v2) · exp(pv)
1 + γv

≡ rv exp(−v2) · λ(v),

where λ > 1 at p > 0, γ > 0, and v > 0. Besides,
the function rv exp(−v2) is chaotic for some r > 0.
From here it follows that the function rv exp(−v2)
is transitive.

Represent function (25) in the form:

φ(w) =
2
π

arctan
(
r tan

πw

2
· µ(w)

· exp
(
−tan2 πw

2

))
,

where

µ(w) =
exp

(
p · tan πw

2

)
1 + γ tan

πw

2

> 1

at p > 0, γ > 0, and ∀w ∈ W.
Consider the function

φ0(w) =
2
π

arctan
(
r tan

πw

2
· exp

(
−tan2 πw

2

))

≡ 2
π

arctan(r · η(w)).

(The function φ0(w) is the function φ(w) at p = 0
and γ = 0.)

By virtue of transitivity of the function
rv exp(−v2) the function φ0(w) will be also tran-
sitive. It means that for any open sets U1, U2 ⊂ W

there exists a natural number n such that φ
(n)
0 (U1)∩

U2 �= ∅ [Crownover, 1995].
By d(a, b) = |a − b|, ∀ a, b ∈ W, denote a met-

ric on the space W. It is clear that W is a com-
plete metric space. Then, it is possible to show that
the transitivity of φ0(w) is equivalent to the condi-

tion: for any open set U ⊂ W,
⋃∞

n=0 φ
(n)
0 (U) = W,

where A is the closure of A. Since ∀w ∈ W we
have φ0(w) ≤ φ(w), then from µ > 1 it follows that
∀wi, wj ∈ W

d(φ0(wi), φ0(wj))

=
2
π
|arctan(r · η(wi)) − arctan(r · η(wj))|

=
2
π

∣∣∣∣arctan r(η(wi) − η(wj))
1 + η(wi)η(wj)

∣∣∣∣
<

2
π

∣∣∣∣arctan r · (µ(wi)η(wi) − µ(wj)η(wj))
1 + µ(wi)µ(wj)η(wi)η(wj)

∣∣∣∣
= d(φ(wi), φ(wj)).
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Therefore, ∀wi, wj ∈ U, and any integer n ≥ 0, we
have

n∑
i=0

d(φ(i)
0 (wi), φ

(i)
0 (wj))

<
n∑

i=0

d(φ(i)(wi), φ(i)(wj)).

Hence,
⋃∞

n=0 φ(n)(U) = W and the function φ(w)
(it means that and the function α(v)) is transitive.

Finally, from (a) and (b) it follows that for some
r, p, and γ the function α(v) is chaotic [Crownover,
1995]. �

5. Examples

(1) Consider the system containing a limit cycle and
a homoclinic orbit (see Figs. 1 and 2):



ẋ(t) = 2x − 16z − 3x2 − xy + xz

+ y2 − z2,

ẏ(t) = −7xy + yz + 2.5y2 − 2.5z2,

ż(t) = 16x + 2z + z2 − 7xz + 3yz.

(26)

Here the eigenvalues of Jacobi matrix at the point
O = (0, 0, 0) are λ1,2 = 2 ± 16i, λ3 = 0. For system
(26) all conditions of Theorems 6 and 7 are valid.

(2) Consider the system also containing a homo-
clinic orbit (see Figs. 3 and 4):

Fig. 1. The phase portrait of systems (26) with initial values
(0,−3, 0). There is a limit cycle.

Fig. 2. The phase portrait of system (26) with initial values
(0, 0.4, 0). There is a homoclinic orbit connected at the point
(0; 0; 0).




ẋ(t) = 2x − 9y + 12z − 3x2 − xy + xz

+ y2 − z2,

ẏ(t) = 9x + 2y − 13z − 7xy + yz

+ 2.5y2 − 2.5z2,

ż(t) = z2 − 7xz + 3yz.

(27)

For system (27) all conditions of Theorem 8 are
valid.

Fig. 3. Phase portrait of system (27) with initial values
(0, 0, 0.01). There is a homoclinic orbit connected at the point
(0; 0; 0) and the chaotic attractor of homoclinic type.

1350105-12
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Fig. 4. The homoclinic orbit of system (27) connected at
the point (15.47; 41.15; 0).

(3) Another system with a chaotic attractor of
homoclinic type is (see Fig. 5):


ẋ(t) = 2x − 20z + 3x2 − 2y2 − 2xz

− 2yz − z2,

ẏ(t) = −x + 8xy + 4yz + 4xz + 4y2 + z2,

ż(t) = 20x + 2z + z2 + 4xz + 2yz.

(28)

Initial values are (0,−1, 0). There is a chaotic
attractor of homoclinic type.

Fig. 5. The phase portrait of system (28).

Fig. 6. The phase portrait of system (29).

(4) Consider the system also containing a chaotic
attractor (see Fig. 6):




ẋ(t) = 20x − 10y + 9z − 3x2 − xy + xz

+ y2 − z2,

ẏ(t) = 37x − 12y + 19z − 7xy + yz

+ 2.5y2 − 2.5z2,

ż(t) = z2 − 7xz + 3yz.

(29)

Fig. 7. The phase portrait of system (30).

1350105-13
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Eigenvalues of the Jacobi matrix at the point
(0, 0, 0) are λ1,2 = 4 ± 10.677i, λ3 = 0; at the
equilibrium point (4.8857, 12.8551, 0) are λ1,2 =
−2.0468 ± 12.9858i, λ3 = 4.3654. (Another sta-
ble equilibrium point is (5.7072, 12.7845, 1.5971).)
Initial values are (0, 0,−0.1). For system (29) all
conditions of Theorem 8 are valid. There is a homo-
clinic orbit connected at O = (0, 0, 0). This orbit
and the entire chaotic attractor are disposed below
plane XOY.

(5) Another system with a chaotic attractor as (see
Fig. 7):




ẋ(t) = 3x + 10y + 2x2 + 2xy + xz

− y2 + z2,

ẏ(t) = −10x + 3y − x2 + 2xy + yz

+ y2 − z2,

ż(t) = z2 + 2xz + 3yz.

(30)

It is obtained from system (15) with linear trans-
formations of coordinates x and y. Here eigen-
values of the Jacobi matrix at the point (0, 0, 0)
are λ1,2 = 3 ± 10i, λ3 = 0; at the equilibrium

(a) (b)

(c) (d)

Fig. 8. The bifurcation diagram of map (24) at γ = 1 and different values of p. (a) p = 0, (b) p = 1, (c) p = 1.5 and
(d) p = 2.

1350105-14
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(a) (b)

Fig. 9. The bifurcation diagram of map (24) at p = 2 and different values of γ. (a) γ = 0 and (b) γ = 0.5.

point (−6.5443, 6.7266, 0) eigenvalues are λ1,2 =
−3.1797 ± 15.1922i, λ3 = 7.0912, and at the equi-
librium point (−0.7152,−0.3071, 2.3517) eigenval-
ues are λ1,2 = 4.7180 ± 10.7237i, λ3 = −1.8651.
For system (30) all conditions of Theorem 8 are
valid. There is a homoclinic orbit connected at
O = (0, 0, 0). This orbit and the entire chaotic
attractor are disposed below plane XOY.

(6) All systems (26)–(30) have either periodic or
homoclinic orbits. As shown in Sec. 4, a behav-
ior of these systems is determined by discrete map
(24). Bifurcation diagrams of map (24) are below
(see Figs. 8 and 9). These diagrams show a chaotic
behavior of map (24) [and systems (26)–(30)] at
some values of parameters r > 0, γ > 0, and p.

The analysis of Figs. 8 and 9 shows that with
either growth of the parameter p or diminishing
parameter γ, a scenario is seen of the chaotic behav-
ior of system (15) deviating from the classic Feigen-
baum scenario of the period doubling bifurcation.

6. Conclusion

The present work is a continuation of article
[Belozyorov, 2011a]. As compared to the paper
[Belozyorov, 2011a], the following new results are
obtained.

(1) Theorems 6 and 7 guaranteeing the existence in
system (15) of different types of invariant sets
are included.

(2) Theorem 8 on the existence of homoclinic orbits
in the case of several equilibriums (including
singular) of system (15) is proved.

(3) For system (15) at the same parameters, the
presence of a few homoclinic orbits is shown.

(4) The new exponential 1D discrete map (24)
determining the chaotic behavior of system (15)
is built.

(5) In Theorem 9, the chaotic behavior of map (24)
for some values of parameters is proved.
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