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a b s t r a c t

Second-order electric and magnetic properties calculated using an approach based upon the simulta-
neous analytical dependence of the bond order matrix and basis set functions on the corresponding per-
turbation parameters have been obtained and analyzed for a series of organic molecules. Various
methods of selection of basis set quality for different atoms in investigated molecules were examined
in conjunction with calculations of 1H NMR chemical shifts. Comparison of the results obtained at differ-
ent levels of theory (HF, DFT, MP2) demonstrates small correlation effects for polarizability and magnetic
susceptibility while the electron correlation effects play crucial role for calculations of nuclear magnetic
shielding (chemical shifts).

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Understanding of the characteristics of various physico-chemi-
cal properties of molecules could be acquired based on their
important second-order properties such as polarizability, magnet-
izability and nuclear magnetic shielding. In addition to numerous
experimental investigations of electric and magnetic properties
of chemical compounds in recent years the theoretical, quantum
mechanical methods become a useful and popular tools both for
prediction a variety of properties for new compounds and for
structure elucidation and signal assignments based on combined
experimental and theoretical investigation of NMR spectra.

The exact calculation of the physical properties of many-body
systems using the quantum mechanical formalism rests first of
all on the many-electron problem difficulties. Such problems can
be avoided using designated, approximate methods. One of the
most widespread methods of the electronic wave function calcula-
tions is coupled-perturbed-Hartree–Fock (CPHF) approach. Since in
the conventional CPHF method [1] a common gauge origin is
adopted for all molecular orbitals (MO) thus implying a poor
description for nearly all atoms in a molecule [2], in order to avoid
gauge origin problem a number of approaches have derived from
CPHF for calculations of second-order magnetic properties. The

most popular among them are: GIAO [3], IGLO [4,5], LORG [6],
IGAIM [7], CSGT [8] methods. Some of these methods have been
extended later to DFT [9], MP2 [10,11] and other correlated formal-
isms (see the discussion by Helgaker et al. [12]). Nevertheless, due
to the approximate solution of the corresponding equations, the
wave function does not provide a true description of electronic
density distribution in all domains of the configuration space.
The well known solution to this problem is an ‘‘extension” of the
initial basis set of atomic orbitals (AO) used in calculations. A tra-
ditional way of such an ‘‘extension” is the increase of the numbers
of original AOs by means of augmentation of the so-called polari-
zation and diffuses functions to the initial set of atomic orbitals.
However, in such a case, the size of the basis set obtained exceeds
considerably the initial basis set size. In addition, neither the re-
quired quantity nor the functional form of the additional functions
is defined by any physically justified manner.

In this paper the method of selection of the physically justified
basis sets is proposed. The considered basis sets of AO’s are charac-
terized by relatively small sizes and the most accurate description
of the wave function behavior in the configuration space domains
that provide noticeable contribution to the value of evaluated
physical property. This is of a crucial importance for study of
behavior of a system subjected to the influence of an external field
where the problem of determining the ‘‘distortion” in the original
basis set arises. The procedure to construct such kind of basis set
(designated earlier as 6-31G##) is shortly described. In order to
evaluate reliability of the proposed basis set the test calculations
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of polarizabilities, magnetic susceptibilities and hydrogen chemi-
cal shifts for the series of organic molecules have been performed
and compared with experimental values as well as the results of
calculations at various levels of theory.

2. Theory

In the proposed here approximation the expressions for the sec-
ond-order correction E(2) to the energy of unperturbed molecule
E(0) are computed as

Eð2Þ ¼ 2Sp Pð1ÞW ð0;0Þ
1 þ Pð0ÞðW ð1;0Þ

1 þW ð0;1Þ
1 Þ þ Pð0ÞW ð0;0Þ

2

h i
ð1Þ

Here W ðn;mÞ
i (i = 1, 2; n, m = 0, 1) is the matrix with matrix elements

W ðn;mÞ
ipq ¼ vðnÞp ;WivðmÞq

D E
, Wi corresponds to the property perturbation

operator; vð1Þp is the first-order correction function to the initial ba-

sis function vð0Þp .
All formulae are written in the atomic units: h = m = e = 1.
An explicit expression for the first-order density (bond order)

matrix P(1) to the zero-order matrix P(0) given below has been de-
rived in [13]:

Pð1Þ ¼
Xn

a¼1

Xm

b¼nþ1

Cð0Þb Kba
eC ð0Þa þ Cð0Þa

eK ba
eC ð0Þb

� �
� S�1 ~lPð0Þ � Pð0ÞlS�1

ð2Þ

where Kba ¼ ðea � ebÞ�1 eC ð0Þb ðF
ð1Þ � ea ~l� eblÞCð0Þa

h i
; ea are one-elec-

tron energies; F(1) is the first-order correction to the Fock operator

matrix; l is the matrix with elements lðn;mÞpq ¼ vðnÞp ;vðmÞq

D E
; S�1 rep-

resents the matrix reverse to an overlap matrix S; Cð0Þa is the molec-
ular orbital expansion coefficient.

By substituting (2) into (1) one can obtain:

Eð2Þ ¼ 2Sp
Xn

a¼1

Xm

b¼nþ1

Cð0Þb Kba
eC ð0Þa þ Cð0Þa

eK ba
eC ð0Þb

� �
W ð0;0Þ

1

"
þ Pð0Þ W ð1;0Þ

1 þW ð0;1Þ
1

� �
� ðS�1lPð0Þ þ Pð0ÞlS�1ÞW ð0;0Þ

1

þ Pð0ÞW ð0;0Þ
2

�
ð3Þ

here the first term appears in the case of an unperturbed basis; the
second term expresses the basis set dependence on perturbation;
the third one takes into account complex dependence of the first-order
bond order matrix P(1) on the perturbation parameter k [i.e.,
P(1) = f(k, v(k))] and the fourth term describes the second order depen-
dence on parameter k in Hamiltonian (in the magnetic field case).

If v(1) is zero, then the expressions for P(1) and E(2) are reduced
to the form arising from the standard perturbation theory that is
used in almost all software packages for calculation of molecular
properties.

Determination of explicit form of the first-order correction
functions v(1) to the basis set AO’s v(0) is based upon the solution
of inhomogeneous Schrödinger equation:

�1
2

Dþ VðrÞ � E
� �

vðrÞ ¼ kWðrÞvðrÞ ð4Þ

where V(r) is a potential which defines the form of basis set AO’s
and W(r) is the perturbation operator. The differential equation
(4) can be reduced to the integral equation of the second order.

From its solution it follows that the first-order correction to the
solution v(0)(r) which corresponds to the homogeneous form
(kW(r) � 0) of Eq. (4) is determined by relation:

vð1ÞðrÞ ¼
Z

GEðr; r0ÞWðr0Þvð0Þðr0Þdr0 ð5Þ

here GE(r, r0) is the Green’s function of the homogeneous Schröding-
er equation. For the spherically symmetrical potential V(r) the
Green’s function can be expressed in the following form:

GEðr; r0Þ ¼
X
l;m

glðr; r0; EÞYlmðr0ÞY�lm r00
� �

ð6Þ

where Ylm are spherical functions of the argument r0 = r/r, and gl

(r, r0; E) represents part of the Green’s function.
In molecular calculations the Gaussian-type functions are the

most commonly used as the basis set functions:

vðn; l;mÞ ¼ Nnrn�1 expð�nr2ÞYlmðr0Þ ð7Þ

Such functions are eigenfunctions of an operator that approximates
to form given by (4) the homogeneous equations with the
potentials:

VðrÞ ¼ 2n2r2 þ A
2r2 ð8Þ

where A = n(n � 1) � l(l + 1), n is an orbital exponent, and Nn is a
normalization factor. With this form of A the Gaussian-type func-
tions contain only the nodeless functions and they do not form
the complete basis set, as long as they are the solutions of the
Schrödinger equation with different potentials of type (8).

The analytical representation of the radial Green function for
potentials (8) could be written through the Whittaker functions
[14].

In the case of perturbation by weak homogeneous electric field
the parameters of perturbation represent the components dx, dy, dz

of dipole moment operator d̂.
According to (5) the expressions for the first-order correction

functions to the Gaussian type basis functions in electric field
(W1 = dz = �r cos h in a.u.) could be written as follows:

Sð1Þ ¼ � N1

2n1

ffiffiffi
3
p re�n1r2

Y10

Pð1Þx;y ¼ �
N2

2n2

ffiffiffi
5
p r2e�n2r2 Yc

21

Ys
21

( )

Pð1Þz ¼ �
N2

ffiffiffi
3
p

n2
e�n2r2

ffiffiffiffi
p
p

3
r2½Y10�2 �

1
4n2

Y00

	 
 ð9Þ

Correction functions v(1), which correspond to perturbation
operators dx and dy, could be expressed in a form similar to (9).

In the case of perturbation by weak homogeneous magnetic
field perturbation operator cW 1 depends on the choice of the origin
coordinate system for the vector potential and could be expressed
as follows:

W1 ¼ ð1=2cÞ � ð~r �~RÞ � r ¼W0 � ð1=2cÞ �~R�r

where~r is the electron position vector relative to a nucleus, and~R is
the nucleus position vector relative to the molecular reference sys-
tem. Since the effect of the W0 operator on the basis function v(0) is
reduced to the modification of the magnetic quantum number m,
the contribution of this operator to (5) vanishes. Thus the operator
�ð1=2cÞ �~R�r could be suitable for the description of a
perturbation.

The first-order correction functions to Gaussian orbitals of S-,
P-, and D-type in homogeneous magnetic field obtained using
operator Lxx = [(r � R)@/@r]xx could be written as:
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Sð1Þ ¼ �N1
re�nr2ffiffiffi

3
p RzYs

11 � RyY10
� �

Pð1Þx ¼ N2
r2enr2ffiffiffi

5
p RyYc

21 � RzYc
22

� �
Pð1Þy ¼ N2r2e�nr2

Rz
Yc

22ffiffiffi
5
p þ Y20ffiffiffiffiffiffi

15
p � Y00ffiffiffi

3
p

� �
þ Ry

Ys
21ffiffiffi
5
p

� �
Pð1Þz ¼ N2r2e�nr2

Ry
Y00ffiffiffi

3
p þ 2Y20ffiffiffiffiffiffi

15
p

� �
� Rz

Ys
21ffiffiffi
5
p

� �
Dð1Þ0 ¼ N3r3e�nr2

Ry
3Y30ffiffiffiffiffiffi

35
p þ 2Y10ffiffiffiffiffiffi

15
p

� �
� Rz

ffiffiffiffiffiffi
6

35

r
Ys

31 �
Ys

11ffiffiffiffiffiffi
15
p

 !" #

Dð1Þ1 ¼ N3r3e�nr2
Ry

4Yc
31ffiffiffiffiffiffi

70
p þ 2Yc

11ffiffiffi
5
p

� �
� Rz

Ys
32ffiffiffi
7
p

� �
Dð1Þ�1 ¼ �N3

re�nr2

2n
Rz � 2

ffiffiffi
5
p

Y10 þ N3r3e�nr2

� Ry
Yc

32ffiffiffi
7
p þ 3Y30ffiffiffiffiffiffiffiffiffi

105
p þ Y10ffiffiffi

5
p

� �
þ Ry þ

4Ys
31ffiffiffiffiffiffi

70
p þ Ys

11ffiffiffi
5
p

� �� �
Dð1Þ2 ¼ �N3r3e�nr2

Rz
3Ys

33ffiffiffiffiffiffi
42
p þ Ys

31ffiffiffiffiffiffi
70
p � Ys

11ffiffiffi
5
p

� �
� Ry

Ys
32ffiffiffi
7
p

� �
Dð1Þ�2 ¼ N3r3e�nr2

Rz
3Yc

33ffiffiffiffiffiffi
42
p þ Yc

31ffiffiffiffiffiffi
70
p � Yc

11ffiffiffi
5
p

� �
þ Ry

Ys
32ffiffiffi
7
p

� �

ð10Þ

where Yc
lm and Ys

lm represent real spherical functions, and Rx,y,z are
components of radius-vector of nucleus relatively to molecular sys-
tem coordinates. Corresponding expressions for Lyy and Lzz pertur-
bation operators could be obtained from (10) using cyclic
permutation procedure.

Based on expressions (1), (2), (3), (9), and (10) we have devel-
oped computational program POLMAG-3, which allows accurate
prediction of static polarizability and magnetic susceptibility at
the Hartree–Fock level of theory using minimal 6-31G basis set
(see [15,16] and Table 1).

An alternative way to improve accuracy of predictions for sec-
ond-order electric and magnetic properties is augmentation of
the standard 6-31G basis set. It can be accomplished by adding
polarization and diffuses functions and expanding them in a series
of basis-like functions obtained from expressions (9), (10).

As could be seen from Eqs. (9) and (10), corrections to be ap-
plied in electric and magnetic field include electron radius-vector

at the same power as applicable for basis functions augmented
by an equal set of spherical functions. Taking into account contri-
butions of all perturbation operator components, correction v(1)

could be expressed as expansion in a series of the set of atomic
orbitals that are the same type as the orbitals in unperturbed basis
set, following (11):

Sð1ÞðnÞ ! Pð0ÞðnÞ
Pð1ÞðnÞ ! sð0ÞðnÞ þ dð0ÞðnÞ
Dð1ÞðnÞ ! pð0ÞðnÞ þ f ð0ÞðnÞ

ð11Þ

Augmentation of 6-31G basis set by physically justified additional
functions leads to formation of 6-31G## basis set which could be
expressed in the following form [13,17,18]:

fSðn1Þ; SPðn2Þ; SPðn3Þ; SPðn4Þ; SPðn5Þ;Dðn6Þ;Dðn7Þg
þ fpðn1Þ;dðn2Þ;dðn3Þ; dðn4Þ;dðn5Þ;pðn6Þ;pðn7Þf ðn6Þ; f ðn7Þg

Thus new 6-31G## basis set does not have uncertainties in selection
of additional basis functions and could be used for calculations of
both the electric and magnetic properties in combination with
any DFT or ab initio approach. In addition, the inclusion of our rec-
ommended basis set does not require program code modification.

3. Results and discussion

Table 1 illustrates the performance of a recently developed
POLMAG-3 program using the 6-31G basis set for predictions of
the static polarizability for a number of compounds. It also in-
cludes comparison with the results of standard coupled-perturbed
calculations at HF, DFT and MP2 levels with proposed here 6-31G##

and standard 6-31G(2df,p) basis sets. Geometrical parameters of
all considered species have been optimized at the same levels of
theory. Standard coupled-perturbed calculations have been carried
out with the Gaussian 03 software [19].

A comparison of the calculated and experimental values clearly
demonstrates the superiority of the POLMAG/6-31G calculations
over the standard CPHF computations with both the 6-31G, and
also with the extended 6-31G(2df,p) basis sets. The electron corre-
lation effects considered at the DFT and MP2 levels do not lead to
considerable improvement of accuracy of calculations with

Table 1
Calculated and experimental isotropic polarizability(in a.u.) for row of organic compounds, values of MAE and RMSE, and parameters of the linear regression equation
kexpt = Akcalc + B.

Molecule POLMAG
6-31G

Gaussian
6-31G

Gaussian 6-31G## Gaussian 6-31G(2df,p) Expt.
[20,21]

HF HF HF MP2 BP86 B3LYP PBE1PBE HF MP2 BP86 B3LYP PBE1PBE

CH4 16.72 11.98 15.19 15.66 16.63 15.96 15.88 12.94 12.86 13.63 13.21 13.48 16.52
HC„CH 23.27 13.69 19.91 19.90 20.81 20.15 20.24 16.15 15.83 16.67 16.28 16.38 23.53
H2C@CH2 27.49 19.60 24.94 24.65 26.04 25.23 25.18 21.33 20.52 21.91 21.37 21.72 28.26
H3C–CH3 28.61 22.22 26.12 27.07 28.78 27.59 27.39 23.25 23.24 24.77 23.94 24.50 28.52
HC„C–CH3 41.27 24.94 31.98 32.69 35.05 33.59 33.53 27.62 27.64 29.85 28.79 29.66 41.76
cyclo-C3H6 35.74 28.71 33.08 34.39 36.17 34.77 34.48 29.98 30.03 31.84 33.08 33.88 38.06
H3C–CH2–CH3 40.92 32.23 37.07 38.56 41.06 39.31 39.02 33.47 33.63 36.04 34.75 35.66 39.96
1-Butyne 50.71 35.53 43.30 43.57 47.76 45.73 45.51 38.32 38.50 41.64 40.10 41.32 50.07
1-Butene 53.05 40.88 47.85 48.65 52.08 50.01 49.68 42.95 42.45 45.99 44.42 45.56 53.85
trans-2-Butene 53.22 41.59 48.46 49.33 53.31 51.04 50.71 43.69 43.24 47.23 45.44 45.34 57.36
C6H6 73.78 51.10 62.11 64.01 66.20 64.11 63.79 55.35 56.21 59.02 57.29 58.59 67.57
cyclo-C6H12 74.15 57.26 64.49 67.31 71.07 68.20 67.54 59.53 60.41 64.67 62.99 64.80 74.32
CH3OH 20.13 14.21 18.22 19.49 20.82 19.83 19.63 16.00 16.48 17.67 16.97 16.90 20.79
CH3CHO 29.42 21.96 25.94 27.55 29.44 28.00 27.78 23.64 24.41 26.25 25.11 25.04 28.87
CH3CH2OH 32.17 24.44 29.23 31.07 33.25 31.67 31.34 26.32 26.98 29.05 27.87 27.74 34.50
MAE 1.471 10.907 5.070 4.003 1.974 3.250 3.483 8.893 8.767 6.514 7.489 6.891
RMSE 2.274 2.782 2.038 2.295 2.012 2.012 1.966 2.292 2.548 2.351 2.455 2.509
A 0.964 1.248 1.126 1.092 1.038 1.078 1.087 1.212 1.194 1.118 1.150 1.116
B 1.546 3.624 0.635 0.683 0.223 0.373 0.272 2.249 2.647 2.538 2.557 3.019
R 0.9919 0.9878 0.9935 0.9917 0.9936 0.9936 0.9939 0.9917 0.9898 0.9913 0.9905 0.9901
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6-31G(2df,p) basis set. In contrast, an application of 6-31G## basis
set which has the same number, but different (physically justified)
types of the additional functions allows one to obtain values which

are in good correspondence with the experimental results. Linear
regression analysis shows that among the used approaches the
BP86/6-31G## level provides results that are characterized by the

Table 3
Calculated and experimental 1H chemical shifts (in ppm) for some of hydrocarbons (relatively to CH4), values of MAE and RMSE, and parameters of the linear regression equation
dexpt = Adcalc + B.

Method HF BP86 B3LYP PBE1PBE MP2 Expt.

Basis seta I II III I II III I II III I II III I II III

GIAO
C2H4 5.19 5.16 5.28 5.61 5.40 5.54 5.49 5.32 5.47 5.61 5.45 5.60 5.21 5.21 5.21 5.18c

C2H6 0.40 0.47 0.51 0.75 0.82 0.84 0.65 0.73 0.75 0.64 0.71 0.76 0.57 0.68 0.66 0.75c

CH3CH2CH3
0.67 0.76 0.80 1.30 1.42 1.40 1.13 1.27 1.24 1.11 1.23 1.25 1.00 1.17 0.99 1.16c

CH3CH2CH3
a 0.46 0.52 0.57 0.86 0.90 0.92 0.75 0.81 0.82 0.74 0.80 0.84 0.71 0.81 0.80 0.68c

C(CH3)4 0.37 0.61 0.33 0.85 0.94 0.94 0.70 0.80 0.80 0.72 0.82 0.84 0.73 0.86 0.82 0.82c

CH2@CH–CH@CH2 CH2 cis 4.90 5.09 4.89 5.31 5.19 5.28 5.19 5.12 5.21 5.31 5.23 5.34 5.02 5.10 5.07 4.97d

CH2 trans 4.79 4.95 4.73 5.26 5.13 5.16 5.13 5.04 5.07 5.25 5.15 5.21 4.92 4.98 4.93 4.84d

CH 6.10 6.21 6.11 6.56 6.33 6.53 6.45 6.26 6.47 6.54 6.38 6.59 6.25 6.20 6.27 6.21d

cyclo-C6H12
b 0.69 0.79 0.86 1.40 1.51 1.55 1.20 1.32 1.36 1.20 1.31 1.39 1.19 1.36 1.33 1.31e

MAE 0.263 0.202 0.227 0.220 0.191 0.249 0.166 0.092 0.146 0.216 0.138 0.211 0.087 0.068 0.076
RMSE 0.132 0.136 0.137 0.070 0.075 0.055 0.076 0.072 0.051 0.084 0.074 0.054 0.068 0.075 0.087
A 0.925 0.927 0.941 0.938 0.992 0.968 0.933 0.981 0.956 0.912 0.955 0.935 0.968 0.993 0.980
B 0.456 0.351 0.363 �0.028 �0.168 �0.149 0.112 �0.028 �0.007 0.133 0.008 �0.009 0.128 �0.030 0.041
R 0.9986 0.9985 0.9985 0.9996 0.9995 0.9998 0.9995 0.9996 0.9998 0.9994 0.9996 0.9998 0.9996 0.9996 0.9994

CSGT
C2H4 5.24 4.36 5.07 5.62 4.66 5.36 5.51 4.55 4.97 5.65 4.71 5.42 5.18c

C2H6 0.35 0.13 0.39 0.69 0.44 0.70 0.60 0.37 0.31 0.60 0.37 0.64 0.75c

CH3CH2CH3
0.53 0.16 0.60 1.15 0.72 1.17 0.98 0.56 0.72 0.98 0.59 1.06 1.16c

CH3CH2CH3
a 0.34 0.05 0.39 0.73 0.40 0.74 0.63 0.31 0.33 0.63 0.33 0.67 0.68c

C(CH3)4 0.81 1.59 0.73 1.14 1.82 1.30 1.01 1.70 1.16 1.05 1.72 1.20 0.82c

CH2@CH–CH@CH2 CH2 cis 5.52 5.70 5.23 5.72 5.73 5.61 5.63 5.67 5.53 5.78 5.79 5.66 4.97d

CH2 trans 5.38 5.50 5.05 5.62 5.62 5.49 5.51 5.54 5.40 5.67 5.66 5.53 4.84d

CH 6.70 6.60 6.37 6.93 6.67 6.78 6.85 6.60 6.72 6.99 6.73 6.84 6.21d

cyclo-C6H12
b 0.64 0.64 0.29 1.30 0.98 0.73 1.14 0.80 0.38 1.14 0.80 0.64 1.31e

MAE 0.410 0.699 0.340 0.349 0.542 0.358 0.338 0.573 0.482 0.408 0.593 0.391
RMSE 0.241 0.610 0.280 0.152 0.550 0.304 0.157 0.558 0.379 0.170 0.543 0.298
A 0.842 0.825 0.879 0.878 0.873 0.888 0.872 0.864 0.847 0.849 0.846 0.864
B 0.495 0.614 0.525 0.062 0.258 0.131 0.180 0.373 0.479 0.193 0.369 0.224
R 0.9953 0.9697 0.9937 0.9982 0.9754 0.9926 0.9980 0.9747 0.9884 0.9977 0.9761 0.9928

a Calculated as average value for all CH3 protons.
b Calculated as average value for axial and equatorial protons.
c Taken from Ref. [24].
d Obtained from chemical shifts related to TMS by subtraction 0.140 [25].
e Taken from Ref. [26].

Table 2
Calculated and experimental isotropic magnetic susceptibility viso. (in ppm cgs/mol) for row of organic compounds (with signs reversed), values of MAE and RMSE, and
parameters of the linear regression equation vexpt = Avcalc + B.

Molecule HF HF BP86 B3LYP PBE1PBE GIAO/BP86/
6-31G (2df,p)

Expt. [20,21]
6-31G 6-31G##

GIAO CSGT GIAO CSGT GIAO CSGT GIAO CSGT GIAO CSGT

CH4 19.4 11.6 18.8 18.5 19.1 18.8 19.0 18.7 19.1 18.8 18.6 18.7
HC„CH 22.5 13.3 22.1 22.0 21.2 21.0 21.3 21.2 21.3 21.1 21.0 20.8
H2C@CH2 21.3 10.6 20.9 20.5 19.6 19.2 19.8 19.4 19.9 19.4 19.2 19.7
H3C–CH3 30.8 17.3 29.7 29.1 29.4 29.0 29.3 28.9 29.5 29.0 28.8 27.4
H2C@C@CH2 32.0 17.6 30.6 30.0 30.7 30.2 30.5 30.0 30.7 30.1 30.2 25.3 ± 0.8
cyclo-C3H6 43.4 26.6 42.3 41.4 41.2 40.5 41.2 40.5 41.5 40.7 40.1 39.9
H3C–CH2–CH3 43.3 24.1 41.7 40.9 41.1 40.5 41.0 40.4 41.3 40.6 40.4 40.5
1-Butene 46.4 24.8 45.0 44.0 43.3 42.5 43.4 42.7 43.7 42.8 42.6 41.0
trans-2-Butene 46.3 26.0 44.7 43.6 43.2 42.3 43.3 42.4 43.5 42.6 42.6 43.3
C6H6 62.7 37.7 60.4 58.9 55.4 54.2 56.2 54.9 56.5 55.1 54.3 55.0
cyclo-C6H12 73.5 49.5 69.9 68.3 67.8 66.5 67.8 66.5 67.1 68.5 66.4 68.0
CH3OH 23.0 14.2 22.4 21.8 21.9 21.5 21.9 21.5 21.6 22.0 21.3 21.4
CH3CHO 22.1 12.7 22.4 21.9 20.8 20.3 20.6 21.1 20.6 21.1 20.5 22.2
CH3CH2OH 36.2 20.3 35.0 34.2 34.3 33.7 34.3 33.7 34.5 33.8 33.5 33.7
MAE 3.300 12.186 2.071 1.371 1.121 1.050 1.164 0.929 1.350 0.921 1.000
RMSE 1.593 2.401 1.542 1.545 1.662 1.709 1.756 1.559 1.756 1.756 1.679
A 0.897 1.334 0.948 0.973 1.000 1.021 0.993 1.021 0.996 0.997 1.020
B 0.579 4.884 �0.181 �0.359 �0.857 �0.951 �0.672 �1.081 �0.842 �0.518 �0.867
R 0.9946 0.9877 0.9950 0.9949 0.9941 0.9938 0.9944 0.9949 0.9935 0.9953 0.9940
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slope closest to unity and the smallest intercept. It should be noted
that for both extended basis sets the DFT approach offers better
accuracy if compared to the HF and MP2 calculations.

High efficiency of the POLMAG-3 program for calculations of
magnetic susceptibility has been shown in Ref. [16]. As could be
seen from Table 2, an application of the 6-31G## basis set also sig-
nificantly improves accuracy of predictions, compared to the 6-
31G basis set at HF level of theory. The electron correlation effects
at the DFT level in most cases do not make considerable impacts on
the accuracy of calculations, except for highly-correlated benzene
molecule.

Based on the results collected in Tables 1 and 2 one can con-
clude that 6-31G## basis set accurately describes the changes of
electronic density caused by action of external electro-magnetic
perturbation.

It should be mentioned that such magnetic properties as mag-
netic susceptibility and nuclear magnetic shielding, described by
the following equation (for rp as example):

rp �
X0

m

hwn; Lwmihwm; Lr�3wni
En � Em

¼ wð0Þn ; Lr�3wðLÞn

D E
¼ wð0Þn ; LwðLr�3Þ

n

D E
are defined by the same correction functions (10), which
correspond to angular moment perturbation operator L. Here
hwðLÞn j ¼

P0
mðEn � EmÞ�1hwn; Lwmihwmj is the first-order correction

function for L perturbation operator. Thus, 6-31G## basis set could
be also used for calculations of nuclear magnetic shielding.

The values of 1H chemical shifts for the set of hydrocarbons cal-
culated relatively to CH4 at the HF, DFT and MP2 levels of theory
are collected in Table 3. The vibrational contributions to magnetic
shieldings have not been taken into account in our calculations
since, as has been shown previously in [22,23], for alkyl and vinyl
protons which are considered in this article, such corrections are
fairly similar.

The first-order correction functions, due to magnetic field, that
are depended on the coordinate of the nuclei relatively to molecu-
lar system are equal to zero at the origin point. This allows an
application of the unperturbed 6-31G basis set for calculations of
magnetic shielding constants at those nuclei. Based on such idea
we have compared performance of ‘‘full” 6-31G## basis set (I) with
combined 6-31G##//6-31G basis sets for two cases: (i) 6-31G basis
set for all hydrogen atoms and 6-31G## – for the remaining atoms
(basis set II, see legend for Table 3) and (ii) 6-31G basis set for the
one hydrogen atom of interest and 6-31G## – for the remaining
atoms (basis set III).

The obtained results clearly demonstrate advantage of the GIAO
approach over CSGT technique at both the HF and DFT levels. For
GIAO/6-31G## calculations an accuracy decreases in the order:
MP2 > B3LYP 	 BP86 	 PBE1PBE > HF. The largest deviations from
the experimental data at the DFT level are observed for vinyl pro-
tons in ethylene and butadiene molecules. These discrepancies are
reduced at the MP2 level. The MP2 data shows good agreement be-
tween calculated and observed chemical shifts, both for the alkyl
and vinyl protons. As could be seen from Table 3, CSGT-DFT and
CSGT-HF approaches do not allow obtaining reliable results with
basis sets II and III. In contrast, GIAO-DFT and GIAO-MP2 calcula-
tions provide sufficiently reliable results for nuclear magnetic
shielding with accuracy comparable, and in some cases better than
those obtained from calculations using 6-31G## basis set at the
same levels of theory.

4. Conclusions

We have shown a good performance of the tested approach for
calculations of second-order electric and magnetic properties
(polarizability, magnetizability, and nuclear magnetic shielding).
This technique is based on the consideration of simultaneous
dependence of orbital coefficients and basis functions on an appro-
priate perturbation operator. The obtained correction functions
could be directly implemented into the standard coupled-per-
turbed approach or applied for augmentation of any standard basis
set. Combination of unperturbed basis set for nuclei of interest and
extended basis set for the rest of atoms at GIAO-MP2 and GIAO-
DFT levels of theory might be used as cost-effective approaches
for accurate calculations of 1H nuclear magnetic shielding (chemi-
cal shift).
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