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Abstract: The problem of improving the state of deformation of landmarks is an important aspect
when performing civil services, because they have a historical interest and bring symbolisms which
relate to an event of particular interest for the community. The engineering–geological surveys,
technical evaluation and operational suitability of landmarks of national significance are performed
to improve the state of deformation. The conducted analytical assessment of landslide hazard slope
stability in the RocScience Slide computational complex shows that in the presence of landslide
prevention works, and the stability coefficient is increased by a factor of 1.21–1.37. The regularities of
deformation and strength parameters of the soil–cement obtained during the jet-grouting application
indicated an increase in strength gain of amplifier elements by an average of 1.6–4.0 times. This
proves the effectiveness of the jet-grouting application for improving the state of deformation of
landmarks of national significance.

Keywords: state of deformation; landmark of national significance; jet-grouting; soil foundation;
landslide hazards slope; stability coefficient; historical memory

1. Introduction

The historical memory of humanity is, to a greater degree, kept in the form of material
objects. The contemporary city is comprised of layers of various historical epochs, and it is
expressed in the simultaneous existence of modern buildings and historical monuments.
The cultural development of humanity is currently a balance of new construction and the
protection and conservation of monuments of the past. The expression of this development
is characterized by a paradigm established by the Athenian Charter [1] in 1931 and was
continued by the Venice Charter of 1964 [2].

On the basis of these documents, a well-reflected approach to the historical and
cultural heritage grounded on the already obtained significant experience has been formed.
Within the framework of this approach, the issue of restoration [3–5], conservation [6,7],
and research of the functioning of the contemporary city [8–10] each play an important role.
A special issue that characterizes the development of modern research is the use of non-
destructive techniques, the representative analysis of which is provided in the study [11]. In
line with non-destructive techniques, new techniques have been found that do not affect the
soil basements [12,13] and materials [14–16]. Such a methodology of minimal interference
at the stage of studying the problems upon conservation of historical monuments is the
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most progressive today [17], since it has almost no impact on the complicated and busy life
of the contemporary city.

The functioning of the contemporary city is the result of complex superposition and
crosses many processes that occurred in time. These processes are characterized by specific
historical moments and affect the citizens’ life and the work of all life-support systems. In
particular, these are processes related to a political–economical pattern and geographical
location [18], transport [19–21], engineering–geological and hydrogeological situations [22],
development of territories, passenger flow [23–25], etc.

The continuous urban sprawl contributes significant complexity in a general picture
of their functioning. It is associated with the redevelopment of the city, expansion of
living space, and the emergence of new laws of interaction between areas with established
infrastructure and those that are being developed.

The complexity of the city’s functioning also lies in the fact that the intensification
of its development process requires the expansion of processes in preserving the histori-
cal memory [26]. Therefore, preserving the historical memory plays an essential role in
the course of urbanization as new process markers, allowing researchers to evaluate the
intensity of the current development [27,28].

However, the sign of our postmodern times is sometimes a non-reflected attitude
towards history of national significance and an almost nihilistic attitude to landmarks. This
follows from a negligent attitude to ancient buildings that require continuous monitoring.
Additionally, the lack of timely intervention in the negative processes can cause the destruc-
tion of historical objects. Conversely, a solicitous attitude to them and the preservation of
historical memory is a guarantee, not only of the normal functioning of the city, but also
of the basis of the worldview of citizens who live in it. Thus, the problem of preserving
landmarks is relevant for the functioning of contemporary cities.

The purpose of the article is a comprehensive scientific substantiation of the effec-
tiveness of jet-grouting application to improve the state of deformation of landmarks of
national significance, specifically on the example of the St. Nicholas Gate. According to the
conducted justification, the state of deformation was effectively reduced for the important
building. The practical application of jet-grouting allowed us to save the landmark of
national significance.

2. An Overview of the Problem and Solution
2.1. The Negative Impact on the State of Deformation of Landmarks

There are a number of processes that arise during the city’s functioning, which nega-
tively affect the state of deformation of the territories on which it is built. These processes
are often provoked by human engineering activities [29–33]. For example, the desire to
wedge in a dense building is always associated with the impact on landmarks of a different
value rank. The erection of new high-rise structures within the historic area of the city
negatively affects the existing buildings [34,35].

Artificial processes of urbanization are also weighed down by natural influence—
geological processes, such as soil degradation [36] and the changing properties of the
base [37,38], are permanently acting. It should be noted that the constant straining of
the daylight surface of the city is the process that should be characterized as having
prime importance. This is not an exaggeration, since the controlled straining of slopes
and soil foundations is a guarantee of the normal operation of all buildings, structures,
and infrastructure.

The most important process that adversely affects the state of deformation in cities
is the expansion of landslide hazard territories [39,40]. In this process, the topographic
location of the city, its urban development, and natural landslide formation are connected.
It is known that most modern metropolises, the existence of which goes back hundreds or
thousands of years, were formed at altitudes (mountains, hills, slopes of beams or steep
banks of rivers). This is due to the historical mentality since the location at height is strategic
in the sense of the city’s defense. However, in our time, such a topographical position of
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cities complicates their functioning, since the load from buildings negatively affects the
soil foundation.

The impact of temperature variables, weathering, soil suffusion, etc. lead to a gradual
decrease in the stability of slopes, and thus engineering intervention is needed [41,42].
However, the expansion of landslide hazard territories is complicated by the presence of
seismic processes: natural [43] and associated with engineering [44–47].

The impact of earthquakes (which are a widespread phenomenon) in many cases leads
to the destruction of landslide hazard slopes and the landmarks built on them [48,49]. The
emergence of such forceful actions, or their forecasting, requires early engineering alteration
(strengthening bases and foundations, increasing the stability of slopes by building the
retaining walls, or the use of pile structures, installation of seismically resistant belts, etc.).
Even with a small probability of an earthquake, the complexity of seismic safety measures
is a guarantee of the absence or minimization in the destruction of landmarks.

Equal impact occurs during the so-called industrial seismic activity. Pile driving, the
work of equipment with periodic or pulse modes, transport, explosions during construction
of underground structures, etc. should be evaluated on the basis of powerful computational
complexes [50,51]. Neglect of such impacts may cause an emergency or even the destruction
of landmarks, which requires monetary reconstruction in the future [52].

The presence of vibration actions also negatively affects buildings and structures, in
particular those with historical significance [53]. In relation to the evaluation of the impact
on rail transport, e.g., the metro, the action of construction equipment should be carried out
using modern software [54,55]. In these studies, it is important to predict, in due time, the
change in the state of deformation of bases and landslide hazard slopes when increasing
the level of vibration [56] to that which the longstanding structures were not designed
to withstand.

To illustrate the importance of the above-described multifaceted issue, examples
are presented in the development of the state of deformation of landmarks of national
significance in Ukraine. Importantly, in these examples, over the course of decades (even
in the presence of severe deformations), the engineering protection was minimal. This
characterizes negligent attitudes to landmarks and emphasizes the relatively low level of
attention to the historical heritage.

On 29 June 2012, in Kyiv, there was a local landslide under the landmark of national
significance “St. Andrew’s Church” (the security number is 26071-H). Because of the felling
of trees, dynamic transport loads, vibrational impact of construction tools, and the active
building of a slope (where the church is located), the subsoil has shifted by approximately
3–5 m3. The observation deck from the Dnieper’s side has lost support and hovered over
the crest of the slope. In August 2017, there were local shears and subsidence of a daylight
surface to a depth of up to 3.5 m, as a result of the intensification of construction works and
cutting of a slope (Figure 1) [57].
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On 13 December 2020, after eleven years of restoration works, the St. Andrew’s Church
was open to visitors. However, landslide prevention works planned by the developers of
Andrew’s Descent were not carried out. The monitoring of the state of deformation was
not provided. This demonstrates the possibility of new soil landslides and subsidence of a
daylight surface.

On 28 February 2018, in Lviv, the St. Illia Church (a landmark of national significance)
received significant deformations (the security number is 130031-H). A landslide due to the
technogenic groundwater rise was a cause. After that incident, it was decided to perform
the landslide prevention works (Figure 2) [58].
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As a third example, the St. Nicholas Gate of Kyiv Fortress is presented, which is also a
landmark of national significance (the security number is 867/24). The St. Nicholas Gate
is a unique fortified structure in Ukraine. On the edge of Nikolaivska Square (now Ivan
Franko Square) in Kyiv, in 1846–1850, according to the architect P. Tamanskyi, a defensive
barrack was erected for 500 people. It became a constituent part of the new Pechersk
Fortress. In the center of the building, there is the St. Nicholas Gate, which represents two
arched passages with columns previously decorated with column caps of Corinthian Order.

In 2017, the results of the building’s structural survey showed its unserviceability
through the state of roofs, walls and cylindrical vaulted ceilings. This state was character-
ized by vertical and inclined cracks with an opening width of up to 20 mm, damage and
destruction of brick masonry, etc. In accordance with the report on a preliminary evaluation
of the construction impact on the hydrological regime and the slope stability, the local soil
shear on the slope and the subsidence of the loessial soil under the foundations are the
damage source.

The prediction of the situation suggested that, during soil moistening, there would
be an activation of subsidence processes and a significant deterioration of straining soil
properties. It was possible to activate the landslide process in the event of lengthy heavy
rains or the melting of snow. It was decided that the problem of improving the state of
deformation of this landmark of national significance would be solved immediately.

2.2. Ways to Solve the Problem

Improving the state of deformation should be based on innovative geotechnolo-
gies [59]. They minimally affect the functioning of the city and effectively reduce the
impact of soil medium straining on architectural landmarks.

Geotechnology based on the use of geosynthetics is one of the most scientifically
substantiated and approved techniques [60,61]. This geotechnology has been applied for a
long time using natural materials. It saw a significant increase in development after the
invention of plastics. The immersion of various kinds of canvases, meshes, membranes and
antivibration mats into the soil foundation significantly reduces its straining. However, the
complexity in the application of this geotechnology when strengthening already existing
buildings is the practical impossibility of introducing a geosynthetic element. This geotech-
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nology was most common not during the reconstruction of the old but in the construction
of new buildings and structures.

The same complexity indicates the creation of low-stress-related layers in a weak soil
foundation [62–64], that is, earth-rammer or setting in broken stone [65]. This geotechnol-
ogy is effective when reducing deformations of buildings and structures. However, its
implementation is most appropriate at construction, rather than during the measures to
improve the state of deformation [66].

The original geotechnology is the application of special piles [67], screwed into a
soil foundation. This technology is expedient to use both during construction and the
reconstruction of the structure. However, the European standards have not yet been
developed for this type of piles and their significant cost restrains the extensive application
of such geotechnology.

From the viewpoint of reducing the state of deformation of soil foundations and
landslide hazard slopes, boring, mixing technology and jet-grouting are the most effective
ones [68–70]. The conceptual scientific idea of these technologies is strengthening weak
soil by changing its bond and deformation characteristics. The essence of both of these
geotechnologies is the destruction of the soil structure and mixing or partial substitution
of it by cementing substance in “mix-in-place” mode [71,72]. Destruction occurs due to a
liquid jet, and the liquid itself performs the function of binding the soil particles [73]. The
difference in these closest (in the conceptual sense) geotechnologies is the pressure value.
When applying boring and mixing technology, the pressure of a cutting jet does not even
reach ten atmospheres, whereas in case of jet-grouting it reaches hundreds of atmospheres.

Jet-grouting technology appeared as an alternative one to chemical injection, which
is not only an expensive but also a toxic method. This technology has been widely used
and distributed since the early 1980s for a wide range of engineering–geological conditions
and physical and mechanical properties of soils. They are, in fact, the principal factors
affecting the geometric size of elements and hardness of a geomaterial–soil–cement [74].
The elements of reducing the deformation state of soil foundations and landslide hazard
slopes columns are formed from it (Figure 3).
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Jet-grouting technology allows it to be used when improving the state of deformation
for the landslide hazard slopes and soil foundations. Depending on the number of fluid
flows involved in the process of forming soil–cement elements, the technology is divided
into one-component (one flow), two-component (two flow) and three-component (three
flow) varieties.

When improving the state of deformation of the landmark highlighted in the article, a
one flow variety of jet-grouting was used [75]. Its essence is the fact that both destruction
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and cementation of soil occur with the help of cement slurry. It is supplied under high
pressure (several hundred atmospheres) through the pump to the jet-blowing monitor. At
the exit of the monitor, the velocity of the fluid jet is very quickly reduced. The destructive
efficiency of one flow (simple) jet in the direction from the well axis is limited. The working
radius of the jet of cement slurry in the soil is equal to several tens of centimeters. As a
result of soil treatment with one flow jet, a column is formed from 0.4 to 1.4 m in diameter.

Over the past twenty years, jet-grouting has obtained new solutions that affect the
load-carrying capacity of strengthening elements. The main solution is the reinforcement
of the soil–cement pile immediately after its creation. The reinforcement by steel frames is
currently widespread, but the technology of reinforcing by fiber is the more progressive [76].

Thus, from the above methods to reduce the state of deformation of soil foundations
and landslide hazard slopes, jet-grouting is the most rational one, one which minimally
affects the ancient building and allows us to increase the strength of the soil.

3. Materials and Methods
3.1. Analysis of States

Before implementation of actions to improve the state of deformation for the St.
Nicholas gate, engineering and geological research, technical evaluation and operational
suitability of the building were performed.

In the physical and geographical relation, the investigated area is located at the
intersection of the zones of Mixed forests and the Forest-steppe zone of the Pridneprovska
headland region. In geomorphological relation, the section of surveys is located in the
selvedge of the Kyiv loessial plateau and the crest of the slope to the Dnipro valley. In the
northeastern part, the section borders with a steep slope to the Dnipro River.

The evaluation of the state of landslide hazard slopes at the current scientific level is
impossible without studying the properties of rocks (components of the slopes) and it is
stipulated by a very large number of various factors. Only a detailed recognition of the
morphology, steepness, and height of the slopes, the engineering and geological structure
and properties of the rocks, as well as a complex set of external impacts, make it possible to
resolve the issue of evaluating the stability of landslide hazard slopes. It is also important
that the carrying out of such studies allows predicting the behavior both in the course of
natural behavior and during the construction activities within slopes.

In accordance with the results of engineering and geological research of this object, the
levels of groundwater in the wells were set at depths of 7.7–14.5 m. The site of the project-
oriented building is relating to the flooded territories. The structure of the Earth’s upper
crust is double-level. The lower structural level is an Archaean–Proterozoic crystalline
basement, the upper-Meso-Cenozoic sedimentary apron, which occurs at the denuded
surface of the ground, and it has a common flat slope in the northeast direction. Thus,
the slope (on which the St. Nicholas gate was erected) has a complex engineering and
geological structure of a landslide hazard slope (Figure 4).

The engineering–geological structure of the landslide hazard slope consists of the
following engineering–geological elements (IGE):

• IGE 1a—sandy loam silt, yellow-gray, pale-yellow, stiff, loess-like, subsidental;
• IGE 1b—sandy loam silt, yellow-gray, loessial, plastic;
• IGE 2—clay loam light and heavy silty, brownish-yellow, and low-plastic;
• IGE 3—clay loam light arenaceous and silty, brownish-, yellow-grey, soft-plastic to

low-plastic, with rare inclusions of carbonate bundles;
• IGE 4—sand silt, yellow-grey, dense, from a small degree of water saturation to

saturated with water;
• IGE 5—sandy loam, brownish-grey, brown, plastic to solid, with sand lenses 10%,

inclusions of crushed aggregates and grit of crystalline rocks 5%, with carbonate
bundles 2.0–12.0 mm 10%;
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• IGE 6—clay loam heavy and light arenaceous, brown, brownish-gray, semi-solid,
dense, inclusions of crushed aggregates and grit of crystalline rocks 5%, with carbonate
bundles 2.0–12.0 mm 10%.
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In the engineering–geological structure, there are technogenic sources of water satura-
tion of the soil, which determines the differentiated moisture of the slope soils and various
activity of sheet and linear erosion. The negative features of the engineering–geological
conditions of this site include: the presence of weak plastic soils (IGE 3, IGE 6) in the section,
expansion of subsidental loess-like soils in the upper part of the site, the presence of a
disordered landslide slope and technogenic topwaters within the slope and proximity of
neighboring buildings. Loess-like sandy loams present in a section (IGE 1a) have subsi-
dental properties. At a pressure of 0.1 MPa, the value of the relative deformation of the
subsidence is 0.012. The initial pressure of the subsidence is 78 kPa on average.

3.2. Analytical Evaluation of the Landslide Hazard Slope Stability

In order to evaluate the state of the landslide hazard slope on which the landmark is
built, stability in the natural and predictive states was calculated using the computational
complex RocScience Slide. The complex analyzes the stability of the sliding surfaces (using
methods of limit equilibrium of vertical modules) and allows you to determine the critical
sliding surface for this slope. These methods come from the given below preconditions:

1. The stability loss mechanism is taken as a process of sliding a massif relative to the
fixed part of the slope. The dividing line is called a sliding surface;

2. The shearing resistance over the sliding surface is calculated for static conditions.
Along the entire surface, it must be upheld the criterion of soil destruction, which is
taken in the form of the Coulomb’s law;

3. The true stress of the displacement obtained on the basis of calculation is compared
with the limit shearing resistance. The result of this comparison is expressed as the
stability safety factor Fs. For the selected sliding surface, the stability safety factor Fs
is this indicator when the strength characteristics (an angle of internal friction and
the specific cohesion) along the entire surface are reduced by Fs times. The separated
massif as a whole will be in a state of limit equilibrium. The stability margin factor
of the slope (escarp) Fs is the minimum one among the stability margin factors in all
possible sliding surfaces that satisfy the specified limits.

In the computational complex RocScience Slide, several classical methods for the
analysis of slopes stability are implemented as follows: Bishop; Spencer; Corps of Engineers
No.1; Lowe and Karafiath; Janbu. The differences in the given methods are in static
equilibrium conditions (Table 1).
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Table 1. Methods of calculating the stability of the slope and static equilibrium conditions.

Method
Equilibrium of Forces

Balance of Moments
Vertically Horizontally

Bishop Yes No Yes

Spenser Yes Yes Yes

Corps of Engineers No.1 Yes Yes No

Lowe and Karafiath Yes Yes No

Janbu Yes Yes No

The model of the object under consideration, used to define the slope stability in the
computational complex RocScience Slide is shown in Figure 5.
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The model of the computational complex RocScience Slide shows all the geometric
dimensions of the landslide hazard slope under study as well as the engineering–geological
structure of the landslide hazard slope (see Figure 4) and soil properties. As a method for
calculating slope stability, the Janbu method is adopted. It gives the realistic value of the
stability safety factor Fs, but with some of these values are underestimated. This is further
taken into account in the safety margin of construction using jet-grouting technology.

3.3. Jet-Grouting Technology

The problem of improving the state of deformation for the St. Nicholas Gate is urgent
and received a decision based on the use of jet-grouting technology.

The structure of jet-grouting technological operations is the following: (1) preliminary
drilling of a borehole (∅125–135 mm) with simultaneous lowering of the hydromonitor
to the project mark of the bottom of the future element; (2) connecting the hydromonitor
to a high pressure pump; (3) supplying the mortar in a flexible sleeve to the monitor’s
nozzles under high pressure (∅1.6–2.2 mm); (4) step-by-step raising of a hydromonitor
with rotation; (5) eroding the soil with a jet of the mortar and the formation of an element
filled with a soil–cement mixture; (6) lifting a part of the eroded soil with the spent mortar
toward the surface in the form of pulp on the gap between the borehole and tools.

The main working parameters of the technology of jet cementation are: the rate of
raising the hydromonitor and the velocity of its rotation, the pressure of the mortar and its
density, mortar rate, diameter and number of nozzles. All these parameters in a varying
degree affect the strength, diameter and sizes of soil–cement columns.

For the jet-grouting application, a set of technological equipment is used that ensures
all operations. When choosing a drilling unit, the conditions of jet-grouting play an
important role. In the open areas, both small-sized and large-sized drilling machines are
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possible. In a limited space (inside the building, in the basement parts, in door openings)
one can use small drilling units (Figure 6).
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An important feature of the technology application is strengthening the soil base of the
foundations of existing buildings, due to the absence of shock and vibration loads. These
advantages of jet-grouting make it maximally efficient to perform the strengthening of the
foundations of historic buildings and landmarks, where building machinery can cause
irreparable harm.

4. Discussion
4.1. Results of Evaluating the Landslide Hazard Slope Stability

In the model of the RocScience Slide computational complex, several scenarios have
been simulated to evaluate the impact of the jet-grouting technology application on the
landslide hazard slope stability. The “zero” scenario is the behavior of the slope, where the
St. Nicholas Gate was built in natural state. The normative stability safety factor Fs under
these conditions is 1.25.

One predicted state (“pessimistic” scenario) was simulated, taking into account the
possible raising of groundwater levels by 1.5 m and moisturizing the upper layers of the
soil as a result of atmospheric precipitation. In accordance with the obtained results, the
slope within the construction site has a risk of landslide (Fs = 1.04–1.41) (Figure 7a), and its
separate part is landslide (Fs = 0.92–0.93) (Figure 7b).

Calculations of the slope stability directly adjacent to a part of the building indicate
the need for landslide prevention works to improve the state of deformation. The second
predicted state (“optimistic” scenario) reflects the situation after landslide prevention works
(Figure 7c). The stability margin factor for the “optimistic” scenario (Fs = 1.266), unlike
the “zero” and “pessimistic” increases by 1.21–1.37, the depth of passing the minimum
calculated sliding curve on the track of the retaining wall is 18–21 m from the Earth’s
surface. This indicates the slope stability, and the effectiveness of landslide prevention
works to improve the state of deformation for this landmark.

According to the results of the calculations, landslide prevention works were designed
to improve the state of deformation of the landslide hazard slope. The design of the
landslide protection retaining wall is made of 35 drowning piles, each with a length of
22.0 m, a diameter of 1020 mm and a step of 1.5 m. The total length of a landslide protection
wall was 51.0 m. The binder grating is installed on the heads of piles, which provides
compatibility of piles work.
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4.2. The Practical Solution to the Problem of Improving the State of Deformation

After performing work to improve the state of deformation for the slope adjacent to
the building, the strengthening of its soil foundation was conducted (Figure 8).
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The strengthening was in the creation of soil–cement columns performed by the jet
injection technology. Soil–cement columns had a length of 12 m and a diameter of 0.8 m,
with the expansion of 1.0 m in the upper part. The total number of columns amounted to
478 pcs. For the construction of columns, an artificial cement of grade 400 was used. The
erection of columns on both sides of the foundations allowed for the uniform distribution
of the load from the historical building and reduced the straining of the soil foundation. A
small-size drilling unit allowed to perform soil–cement elements inside the building in a
limited space.

4.3. Patterns of Deformation and Strength Indicators of Soil–Cement

After finishing the complex works, shaft excavation with diameter measurements
of the soil–cement column was performed; this is made to study the material of the soil–
cement column and confirm the diameters. The samples of soil–cement (cores) were
selected from the column that was executed in the soil layer IGE-1-a (sandy-loam loess-like,
subsidental) (Figure 9).
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The soil layer IGE-1-a (sandy-loam loessial, subsidental) has the following characteris-
tics: in natural state γ = 1.66 ton/m3, c = 24 kPa, ϕ = 24◦, E = 13 MPa; in water saturated
state γ = 1.83 ton/m3, c = 9 kPa, ϕ = 18◦, E = 6 MPa. Deformation indicators of soils
are obtained in odometers, which exclude the possibility of lateral expansion of the soil
sample at its load with vertical pressure up to 0.3–0.6 MPa. Indicators of soil strength are
obtained during tests made in the devices of single-plane cut with loads of 0.1–0.15–0.2;
0.1–0.2–0.3; 0.2–0.3–0.4 MPa according to the test schemes of a consolidated-drained and
unconsolidated-undrained cut. Tests were carried out on samples of natural moisture and
saturated with water.

According to the results of the soil–cement, the lowest compression strength rate was
5.2 MPa, while the highest was 7.1 MPa. The strength on the compression of soil–cement
material in the loess-like sandy-loams varied from 3.0 to 12.0 MPa. Based on experimental
data (obtained in the creation of soil–cement elements in various engineering–geological
conditions in Ukraine), we present the results in Table 2 and in Figure 10.

Table 2. Physical and mechanical characteristics of the soil in which jet-grouting was applied.

Soil Type
Physical and Mechanical Characteristics

γ (ton/m3) c (kPa) ϕ (deg)

Deluvial sandy soils 1.84 8 18

Clay loam soft-plastic, peaty 1.69 19 6

Sandy loam loessial, subsidental 1.65 10 22

Sandy loam, silty, solid 1.60 35 24

Sandy loam loessial, silty, solid 1.62 36 26
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The comparison of ranges of obtained strength parameters for the soil–cement was
performed (which was selected from columns in the strengthening of the St. Nicholas Gate)
with previously obtained values in similar ground conditions. Analyzing the strength
diagram of soils and soil–cement (Figure 10), we can say about increasing the strength
of columns on average 1.6–4.0 times. This indicates the effectiveness of the jet-grouting
application, especially in deluvial sandy soils and sandy loams.
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5. Conclusions

1. As an example of the effective application of jet-grouting, the St. Nicholas Gate of Kyiv
Fortress is given, which is landmarks of national significance (the security number
is 867/24). To improve its state of deformation, engineering–geological surveys are
performed, evaluating the technical state and operational suitability of the building.

2. An analytical evaluation of the landslide hazard slope stability in the computational
complex RocScience Slide is carried out, which shows that in the presence of landslide
prevention works, the stability margin factor is increased by 1.21–1.37.

3. The algorithm of the main stages in performing the landslide prevention works to
stabilize the adjacent slope, where the St. Nicholas Gate is built, was described. The
technological parameters of soil strengthening in the base of a building with the jet-
grouting application are presented. The conducted measurements of the performed
elements of strengthening prove the correctness in selecting technological parameters
of drilling equipment, the correspondence of actual diameters to the projected and
expected values of the strength of soil–cement material on compression.

4. The strength parameters of the soil–cement obtained during the jet-grouting applica-
tion indicate an increase in the strength of columns on average by 1.6–4.0 times. This
proves the effective jet-grouting application to improve the state of deformation of the
landmarks of national significance. Works upon the realization of this geotechnology,
executed on the example of the St. Nicholas Gate, can be recommended for application
in such cases in other cities of the world.
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