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Abstract. Wave equations with logarithmic nonlinearity are applied to Korteweg-type
materials which can undergo liquid-solid or liquid-gas phase transitions. One of predictions
of the theory is a periodical pattern for inhomogeneities of density, which can occur in the form
of bubbles or cells. Such inhomogeneities are described by soliton and solitary wave solutions
of the logarithmic wave equation in the vicinity of a liquid-solid phase transition. During the
solidification process, these inhomogeneities become centers of nucleation of grains. Previous
works were dealing with generic natural silicate materials in geophysics, such as magmas in
volcanic conduits, where the (approximately) periodical flows and structures were observed.
Here we report an experimental evidence of a large-scale periodicity in structure of grains in
the structural steel S235/A570 Grade 36, copper C-Cu/C14200, stainless steel X10CrNiTi18-
10/AISI 321, and aluminium-magnesium alloy 5083/5056.

1. Introduction
Wave equations with logarithmic nonlinearity find fruitful applications in different branches
of physics - from nuclear physics and condensed-matter theory to particle physics, theory of
physical vacuum and quantum gravity, to mention just a few literature landmarks [1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. Such a universality can be explained by the fact that
one can derive the logarithmic nonlinearity for a large class of the strongly-interacting many-
body systems in which interaction energies predominate kinetic ones, using simple statistical-
mechanics arguments and Madelung hydrodynamical presentation [17]. Examples of such
systems include the Korteweg-type materials which can undergo liquid-solid or liquid-gas phase
transitions [8, 18, 19]. In these materials, capillarity and surface tension play a substantial role,
which makes them useful for modeling various flows with non-negligible surface and interface
effects [20, 21].

One of theory’s predictions are large-scale periodical inhomogeneities of density and
microhardness, bubbles, cells or grains, caused by existence of multiple soliton and Gaussian-
shaped solitary wave solutions for an underlying logarithmic wave equation in the vicinity of
a liquid-solid phase transition. Recently, a study of these solutions’ application was done for
generic natural silicate materials in geophysics [19], such as magmas in volcanic conduits, where
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the (approximately) periodical flows and structures were known to occur [18]. In this paper,
we report an experimental evidence of above-mentioned periodicity in a grain structure of non-
alloy structural steel S235/A570 Grade 36, copper C-Cu/C14200, stainless steel X10CrNiTi18-
10/AISI 321, and aluminium-magnesium alloy 5083/5056.

2. Formalism
Let us use the fluid approximation of continuum mechanics and introduce the fluid wavefunction
which encodes main properties of a flow. This function can be written in a Madelung form [22]

Ψ =
√
ρ exp (iS), (1)

where ρ = ρ(x, t) is a fluid density, and S = S(x, t) is a phase which is related to the fluid
velocity u = ∇S (we assume the irrotational flow for simplicity). This wavefunction should not
be confused with particle wavefunctions in quantum mechanics, but rather it is a complex-valued
function which stores macroscopic information about our fluid, such as the density and velocity
of a fluid parcel [12, 22].

Nevertheless, some mathematical similarities between these categories of functions do exist
and will be used in what follows. In particular, function Ψ obeys a normalization condition∫

V
|Ψ|2dV =

∫
V
ρ dV =M, (2)

where M and V are the total mass and volume of the fluid. This poses restrictions upon fluid
wave functions which are similar to a quantum-mechanical case: the set of all normalizable fluid
wave functions must constitute a Hilbert space, such as L2.

Let us assume that such a fluid is in an isothermal state for which the characteristic kinetic
energies of its particles are smaller than interaction potentials energies between them. This can
happens not only at low temperatures but also in high-density or effectively low-dimensional
system, because it is the ratio of kinetic and potential energies which matters.

If this ratio is small then, following a line of reasoning of works [17, 19], one can find out that
the equation, which controls the dynamics of a function Ψ, contains the logarithmic nonlinearity:

i∂tΨ =

[
−D

2
∇2 − b ln

(
|Ψ|2/ρ0

)]
Ψ, (3)

where b, ρ0 and D are real-valued parameters. One can show that b ∼ T where T is an
absolute temperature and notation “∼” means “a linear function of”. This equation must be
supplemented with the above-mentioned normalization condition.

It should be noted that, for the same set of boundary conditions, eq. (3) allows multiple
(eigen)solutions which correspond to excited states in the Hilbert space of the problem. This
means that the Korteweg-type fluid can “choose” one of these solutions spontaneously and thus
undergo spontaneous phase transitions. However, the ground state is a preferable one as it
corresponds to a minimum of the wave-mechanical energy. This and other low-energy states will
be discussed in the next section.

Furthermore, substituting eq. (1) into eq. (3), one can recover the hydrodynamic laws
for mass and momentum conservation for a two-phase compressible inviscid fluid with internal
capillarity which flow is irrotational and isothermal:

∂tρ+∇ · (ρu) = 0, (4)

∂tu+ u · ∇u− 1

ρ
∇ · T = 0, (5)
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with the stress tensor T of the Korteweg form with capillarity effects [20], which is used to model
fluid mixtures with phase changes and diffuse interfaces [21]:

T = −D
4ρ

∇ρ⊗∇ρ− p̃ I, (6)

where I is the identity matrix, p̃ = p(ρ) − 1
4D∇2ρ = −bρ − 1

4D∇2ρ is a capillary pressure, and
p(ρ) = −bρ is a barotropic equation of state for the fluid pressure p [8, 18].

Thus, eq. (3) is as a matter of fact a short form of writing two equations of hydrodynamics.
This makes it useful for studies, especially because a large amount information about logarithmic
wave equations has been revealed in different branches of physics and mathematics.

3. Phase structure and solutions
Depending on whether the nonlinear coupling b is positive or negative, the Korteweg-type
material can be in different phases. Since this coupling is related to temperature, these phases
correspond to the material above and below a certain critical temperature.

Cellular phase. If the nonlinear coupling is positive, then the field-theoretical potential
density, given by

V(|Ψ|2) = −b|Ψ|2
[
ln (|Ψ|2/ρ0)− 1

]
+ V0, (7)

has an upside-down Mexican-hat shape, with local degenerate maxima at |Ψ| = |Ψe| ≡
√
ρ0 [19].

In this case, one solitary wave solution of eq. (3) can be found analytically [1, 2]. It has the
form of a Gaussian parcel

Ψ(+)
g (x, t) = ±

√
ρ
(+)
g (x) exp

(
−iω(+)

g t
)
, (8)

ρ(+)
g (x) = ρ̃ exp

[
−(x− x0)

2

ℓ2

]
, (9)

ω(+)
g = b

[
d̄− ln

(
ρ̃

ρ0

)]
, (10)

where d̄ is the number of spatial dimensions of the fluid, and

ρ̃ =M/Ṽ , Ṽ = πd̄/2ℓd̄, ℓ =
√

|D/(2b)| (11)

are the density peak value, effective volume and Gaussian width, respectively. One can show

that the solution Ψ
(+)
g has a lowest eigenvalue of the frequency, ω(+), which makes it an analogue

of a ground state in wave mechanics.
Therefore, in this phase, our material tends to fragment into clusters of density

inhomogeneities with a Gaussian profile, referred here as cells. If this phase is a melt of some
metal, then these inhomogeneities are more likely to become centers of crystalline nucleation
when solidification begins.

Foam phase. If the nonlinear coupling is negative, then the field-theoretical potential density
(7) has a conventional Mexican-hat shape, with a local maximum at |Ψ| = 0 and local
degenerate minima at |Ψ| = |Ψe|; the latter correspond to a state with the lowest eigenvalue of

frequency ω
(−)
g = 0. This suggests that the model contains multiple topological sectors, and the

topologically nontrivial solitons exists which interpolate between local minima.
Unfortunately, no topological solutions of eq. (3) can be found analytically in this phase, but

numerical study reveals their existence. In Cartesian coordinates, this solution is a product of
d̄ 1D kink solitons saturating the Bogomolny-Prasad-Sommerfield (BPS) bound,

Ψ(−)
s (x, t) =

d̄∏
j=1

ψj(xj , t), (12)
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and each of these 1D kinks have a nonzero topological charge,

Q = ϱ
−1/2
0 [ψj(xj → +∞)− ψ(xj → −∞)] , j = 1, .., d̄, (13)

where ϱ0 = ρ
1/d̄
0 . Numerical plots of these solutions and their densities can be found in figure 2

of ref. [19]. Despite this solution is not the lowest-frequency one, a nonzero topological charge
enhances its stability against decay into a ground state Ψe. According to a value of charge Q,
all non-singular finite-energy solutions can be cast into four topological sectors [10]. For two of
these sectors, topological charge does not vanish, which ensures stability of corresponding BPS
solitons.

Furthermore, the mass density of the soliton, |Ψ(−)
s |2, grows from its center of mass outwards,

cf. figure 2 of ref. [19], therefore this solution can be viewed as a bubble with a characteristic
size ℓ. In a single-solution setup this solution would extend for the whole space, but in the real
material the multi-soliton picture must occur: kinks and antikinks would alternate and match
each other at distances of an order ℓ. Therefore, a Korteweg material tends to form a foam-like
structure in this phase. This process facilitates the release of previously dissolved gas. It can
result in either boiling during the liquid-gas transition or in the formation of cavities in the
bulk of the material, such as pores and blowholes caused by decreased hydrogen solubility or
carbon monoxide production during solidification. Therefore, the above-mentioned phases can
be used for modeling of both the liquid-gas transitions and the liquid-solid ones, depending on
whether the temperature of the foam phase is larger or smaller than the temperature of the
cellular phase.

4. Large-scale structure of metals
The crystalline structure appears in metals during a solidification process. In pure metals, this
structure is merely a crystal lattice, which can be of a simple cube, body-centered cube and face-
centered cube type. In real metals, due to various impurities and inhomogeneities, a much more
complicated pattern arises. Throughout the melt, multiple centers of nucleation occur. Crystals
begin to grow from those centers until the reach each other in the bulk. This is where interfaces
develop marking borders of single-crystal domains grains, each of about a micrometre scale.
Finally, the non-crystal polycrystalline structure occurs as a macroscopic large-scale pattern of
adjacent grains.

The question arises: how orderly is this large-scale pattern? Is the size and mass of each
grain a totally random value? Apart from purely academic interest, such questions have an
immediate practical importance. Each grain’s microscopic hardness depends on its size and
density distribution therein. Therefore, if one controls sizes of grains, at least on average, one
can control the macroscopic properties of the whole material, such as hardness, plasticity and
mass. This is of utmost importance for industrial applications.

The conventional statistical mechanics of the nucleation process is extremely complicated,
due to an obvious complexity of this process and large number of effects and acting agents
involved, both physical and chemical. In most cases, one ends up applying the “common-
wisdom” arguments: since the impurities and hence nucleation centers are randomly distributed
in the molt bulk, one would expect that distances between those centers are going to be random
too. Therefore, one would expect that the distribution of sizes of grains would be close to
uniform, hence no periodic pattern in the large-scale structure in the polycrystalline metals can
form.

A theory described in previous sections gives a different answer to this question, which is also
a more specific one. If the melt can be described by a Korteweg-type system, at least in the
leading-order approximation, then, according to our model, its density has a tendency to form
a periodic pattern of repeating solitonic solutions (gaussons or kinks, depending on a phase).
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(a) (b)

Figure 1. Hardness profile (a) and distribution of grain sizes (b) for the structural steel
S235/A570 Grade 36.

In other words, the density inhomogeneities emerge in a melt on a large scale which are not
directly related to molecular bonding but they are a collective nonlinear phenomenon. During
a solidification process, those points where density profile reaches extrema are more probable to
become centers of nucleation. Therefore, an average size of a grain can not be a random value,
but it must be close to a width ℓ of the solutions of a previous section, cf. formula (11).

5. Experiment
We consider a few most common polycrystalline metallic materials: non-alloy structural steel
S235/A570 Grade 36, copper C-Cu/C14200, stainless steel X10CrNiTi18-10/AISI 321, and
aluminium-magnesium alloy 5083/5056.

Microstructure of the steel S235/A570 consists of the ferrite and pearlite phases, with a
75 : 25 proportion, respectively. Ferrite grains have mainly an equiaxial structure, except a few
stringer grains of an elongated shape. They have no particular spatial orientation, and their size
varies around 20 µm. Sizes of the pearlitic microconstituent grains for this steel vary between 5
and 45 µm.

Microstructure of the copper specimen consists of approximately equiaxed grains of a size
about 100 µm. As in the previous material, a few stringer grains of an elongated shape are
present. Inside grains one can find deformation twins.

Microstructure of the stainless steel is austenitic and consists of polyhedral grains of a size
about 100 µm. As in the copper specimen above, one can encounter deformation twins in this
steel.

Microstructure of the aluminium alloy specimen consists of approximately equiaxed grains of
a size about 30 µm. A small amount of secondary ferric and silicon phases can be found both
inside grains and on their borders.

The microhardness measurements of microstructure components were performed for above-
mentioned metals by using the Vickers hardness method. The load during the measurements
was chosen according to a size of indentation in a specimen. The minimal load was chose to be
either 0.025 or 0.05 N, depending on a grain’s size. The points of load’s application were in the
following areas of a grain: grain’s center, half-way to the grain’s border, near the border, and
on the border.

The profile of a microhardness throughout the structured steel’s specimen is given in figure
1a. Since the hardness is related to a density of the material, its pattern immediately suggest
a presence of a large-scale structure. The statistical analysis confirms that the average size of
grains is not random: its distribution is far from being uniform but has a peak, cf. figure 1b.
Other materials from those mentioned above demonstrate similar patterns to figure 1, and thus
they are not listed here.
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6. Conclusion
Wave equations with logarithmic nonlinearity are applied to Korteweg-type materials which
can undergo liquid-solid or liquid-gas phase transitions. These materials have a two-phase
structure where each phase is marked by a sign of the nonlinear coupling. Depending on whether
the nonlinear coupling is positive or negative, solutions can have both trivial and non-trivial
topology.

From a physical point of view, such solutions describe the inhomogeneities of density, which
can occur in the form of bubbles or cells in the vicinity of liquid-solid phase transition. For
instance, during the solidification process, these inhomogeneities become centers of nucleation
of grains in the Korteweg-type material. One of theory’s predictions is a large-scale periodical
patterns, which is opposite to the randomness expectations based on plain statistical arguments.
Due to numerous additional effects occurring during the solidification process, this periodicity
gets distorted but not entirely destroyed.

Previous works were dealing with generic natural silicate materials in geophysics, such as
magmas in volcanic conduits, where the (approximately) periodical flows and structures are
known, see works [8, 18, 19] and references therein. We conducted experimental studies of
structure of grains in structural steel S235/A570 Grade 36, copper C-Cu/C14200, stainless steel
X10CrNiTi18-10/AISI 321, and aluminium-magnesium alloy 5083/5056. Based on results, we
thus report an experimental evidence of the above-mentioned periodicity in these materials’
structure. We show that an average size of grains in metals should be closely related to the
average width of the soliton-type solutions ℓ.
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