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Abstract. The evaluation of the parameters of multi-layered foundations (railroad basis, foundations of 
railway structures, etc.) plays an important role in ensuring the safe movement of trains. The method of 
estimating the mechanical and geometric parameters of such foundations based on the solutions of inverse 
problems for multi-layered elastic packets is proposed. As input data for such problems the measured 
displacements of certain points on the package surface are used. The method allows estimating the 
parameters of the a priori distribution of unknown variable parameters, identifying and excluding outliers 
of the measured data from the created model, and constructing a posteriori estimation of the unknown 
parameters probability density with acceptable resolution. Proposed method can be used to create a new 
generation of equipment intended for non-destructive monitoring and estimating of the condition of the 
railroad basis and the foundations of artificial structures. The appropriate software of such vehicles based 
on the developed methods of data processing can be developed. The use of such equipment allows to 
operatively analyzing the state of individual areas of the railroad to decide on the need of repairing or 
replacing the railroad base or foundation of other elements of railroad infrastructure. 

Introduction 

Problem statement. The issues of non-destructive 
monitoring and control of the mechanical and 
geometrical parameters of the roadbed are of great 
importance in the practice of safe railways operation. 
The uncertainty of the train movement process over long 
distances greatly complicates the transportation planning 
and ensuring traffic safety. This is due to factors 
associated with the risks in the process of organizing the 
movement of trains, when it is necessary to ensure high 
reliability of all railway subsystems, in particular 
infrastructure subsystems. Therefore, the evaluation of 
the parameters of multi-layered foundations (railways, 
foundations of railway structures, etc.) plays an 
important role in ensuring the safety of trains [1]. It is 
known that the consequences of train derailments caused 
by the collapse of railway embankments often exceed the 
consequences of accidents caused by the destruction of 
the rail track itself [2]. In addition, the cost of restoring 
the damaged subgrade and associated infrastructure is 
usually significantly higher. This raises the problem of 
creating methods that are more accurate for analyzing 
the diagnostic parameters of the roadbed structures to 

predict possible unallowable deformations and/or 
damage. 

Review of resent researches and publications. 
There is a variety of works devoted to roadbed state 
diagnostics. For example, E.V. Nepomnyashchikh and 
K.A. Kirpichnikov in [3] set the tasks of diagnostics of 
the roadbed, namely: determining the parameters, that 
define the deformation properties of the roadbed; 
predicting the values of such parameters in time and 
their influence on the deformations occurrence of the 
roadbed construction; development of new principles, 
methods and technical means of diagnosing in order to 
detect "bottlenecks" in such structures. V.D. Petrenko, 
D.O. Yampolsky, I.O. Svyatko devoted his work [4] to 
the analysis of the existing modern and classical methods 
of numerical modeling of behavior of soil samples under 
the action of a static load. They proposed a new 
computational model, in which, in addition to the 
classical approach to the analysis of the stress state of the 
roadbed soil, the deformation state is taken into account. 
In the article [5] by scientists Luchko Y.Y. and Kravts, I. 
B., the condition of the roadbed on the railways of 
Ukraine is analyzed, the requirements for it and the 
methods of monitoring are considered. The attention is 
focused on the importance of monitoring the state of 
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railway infrastructure facilities in the context of 
introducing high-speed traffic on the Ukrainian railways. 
The ground penetrating radar method (GPR) as one of 
the most promising methods for monitoring of the 
roadbed is proposed. The world and domestic experience 
in the use of GPR for non-destructive monitoring of the 
condition of the roadbed, ballast layer and artificial 
structures is also given. Its advantages are efficiency of 
work and low labor intensity. However, the methods 
proposed in this work provide information only about the 
geometrical parameters of the railroad bed base and do 
not give any information of its mechanical properties. 

The purpose of the article. The main goal of this 
work is to develop methods for analyzing data from 
scanning devices designed to determine the surface 
points displacement velocities of the loaded railway bed, 
which helps to recognize the weakness of the roadbed 
structures and prevent unallowable deformations and 
destruction of the it and, thus, increase the safety of train 
traffic. 

1 Analysis of methods and technologies 
for determining the diagnostic 
parameters of the roadbed 

The diagnostic parameters for assessing the condition of 
the roadbed can be divided into three groups: geometric 
(the shape and size of the soil base layers that make up 
the roadbed); mechanical (elastic deformation moduli, 
Poisson’s ratios, elastic wave propagation velocities, 
plasticity, creep parameters, etc. of base layer materials); 
physical (indices of electrical and thermal conductivities, 
conductivity parameters of penetrating radiation, 
characteristics of moisture saturation, porosity, etc.). The 
most important in terms of assessing the deformation 
properties of the soil base are the first two groups of 
diagnostic parameters. Physical parameters mainly serve 
to estimate more accurately the geometric and 
mechanical characteristics. 

For obtaining the diagnostic parameters one use the 
following methods. 

1. Engineering and geodetic. They include the 
scanning of transverse embankment profiles, the binding 
of boreholes and geophysical profiles. 

2. GPR. The method is based on determining the 
geological characteristics of the soil foundation using the 
parameters of short high-frequency electromagnetic 
pulses from the generator, transmitted and received 
through antennas located on the ground surface. Devices 
that allow such sounding are called ground penetrating 
radars. By ground penetrating radars it is possible to 
determine the geometrical characteristics of material 
layers that make up the soil foundation. One can also 
estimate some of the physical characteristics of the 
layers (moisture saturation, porosity, etc.). GPR 
techniques are also adjacent to the methods of 
electrodynamic sensing. 

3. Method of loading trains. It consists in the 
determination of the elastic sediment of the railway track 
under the action of a passing loading train [3]. 

4. Method of measuring the surface points elastic 
displacement of the roadbed under the passing trains. 
The method is based on measuring the amplitude of the 
oscillation of the roadbed surface under the action of 
passing trains. Measurements are carried out using low-
frequency sensors installed at various points on the 
subgrade surface. 

5. Seismic method. In the seismic method, the 
velocities of elastic waves excited in the ground bed by a 
shock load are recorded. Taking into account this 
information, the characteristics of the velocities of 
propagation of shock waves and their amplitude-
frequency parameters in the soil massif are investigated, 
which makes it possible to draw conclusions about the 
structure of the subgrade. 

Technologically diagnostic examination is carried out 
in two stages. At the preliminary stage, “problematic” 
sections of the roadbed are identified, which are then 
subjected to more thorough examination at the main 
stage (detailed inspection stage). 

Requirements for the preliminary stage are high 
survey speed, low cost, the possibility of collecting as 
much data as possible for preliminary analysis. The 
procedures of the main stage (seismic sounding, 
measurements using low-frequency sensors) are usually 
much more expensive and time-consuming. 

The main tools of the preliminary stage of 
diagnostics are usually GPR sounding and the use of 
loading trains. The main disadvantage of such an 
organization is that georadars are generally not useful for 
assessing the mechanical properties of the investigated 
subgrade layer materials, and information from load 
trains (deformation of the track under load) is usually 
insufficient for adequately estimation of the entire 
layered foundation deformation properties. The 
procedures of the main stage of diagnosis are quite 
informative, but they are expensive and have a longer 
duration in time. At the same time, the existing level of 
development of measuring devices and data processing 
methods makes it possible to create diagnostic tools that 
combine high data acquisition rates with sufficient 
coverage of the most “informative” part of the 
deformable foundation. 

Such diagnostic tools, that allows to obtain the small 
displacement (or velocity) of deformable surface points, 
call “deflectometers”. Modern deflectometers are already 
widely used in the practice of roads building and 
operating for diagnosing the condition of the pavement 
[6,7]. Such devices are divided into two classes. Devices 
of the first class allow estimating the displacement of the 
test surface points. They can be called “displacement 
deflectometers”. Such tools use, as a rule, optical 
sensors-rangefinders [11], mounted on the bottom of the 
body of a special vehicle that creates the necessary 
loading of the diagnosed pavement. The disadvantage of 
such tools is that they must be equipped with a complex 
system of precise positioning of rangefinder sensors, as 
well as a speed integrator to determine accurately the 
time intervals between fixing the results of two adjacent 
displacement sensors at the same point of the 
investigated surface. 
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Another significant problem is the vibration of the 
mounting base of optical sensors, the amplitude of which 
can significantly (sometimes by several orders of 
magnitude) exceed the values of the measured 
displacements. This problem may partly be solved by 
installing damping devices, as well as accelerometers-
integrators, which take into account the vertical and 
horizontal movements of the sensor mounting base. 

Deflectometers of the second type, called “velocity 
deflectometers”, lack these deficiencies [8]. They use 
optical Doppler sensors to determine the velocities of 
certain points of the investigated surface, which serve as 
the initial data for calculating the parameters of the 
roadbed. As a rule, such instruments are also equipped 
with rangefinder sensors for simultaneous scanning of 
the surface shape of the foundation under study. Such 
combined tools can be installed on the locomotive (see 
Fig. 1) and used to scan the interesting parameters of the 
train roadbed construction in online mode with high 
speed. This approach will provide the minimum amount 
of time and money without changing the train schedule. 

 

Fig. 1. The scanning of the roadbed by deflectometers installed 
on the locomotive. 

It is possible to install deflectometers at different 
angles to the testing surface, which will increase the 
measurement flexibility, making it possible to focus the 
scan on the most informative part of the deformable 
foundation. 

At the present stage of development of testing 
devices, dynamic deflectometers of the considered types 
are equipped with a number of scanning sensors of some 
units [6], which is clearly not enough to obtain any 
detailed information about the parameters of the testing 
multi-layered subgrade. As a rule, the use of such 
devices consists in finding a certain integral index (for 
example, SNP, Adjusted Structural Number, [9]) by 
means of certain empirical formulas, which characterizes 
the residual strength of the testing structure. At the same 
time, the existing development of hardware 
measurement tools, as well as progress in the 
development of effective data processing methods, 
allows using a larger number of input data (moreover, 
data from both deflectometer sensors and georadar and 
other devices), which, obviously, will make it possible to 
estimate more parameters of layered foundation, and 
perhaps with greater accuracy. This will allow to create a 
new generation high-speed tools for monitoring the state 

of the roadbed with online interpretation of obtained 
measurements. 

Data processing supplied by the considered tools is 
based on certain models of layered foundations, 
discussed below. 

2. Models of layered foundations 

Parameters taking into account during the modeling 
of layered foundations can be divided into such main 
groups (Fig. 2). 

 

Fig 2. Layered foundation model. 

1. Parameters of the distributed load that this 
layered packet is subjected to. Define the spline or other 
approximating function. 
2. Characteristics of layered packet geometry. This 
group of parameters determines the number and 
thickness of the layers, the forms of the boundary 
between layers and top free surface defined by splines or 
other approximating functions. 
3. Properties of the interaction between layers. 
These are type of the interaction between layers (hard 
grip or the possibility of slipping according to 
Amontons-Coulomb law etc.) and its parameters. 
4. Mechanical properties of the packet layers. 
These, primarily, the elasticity constants (for example, 
shear modulus G and Poisson’s ratio ), parameters 
characterizing plastic, viscoelastic etc. properties of 
layers material and also fatigue development rate. 
5. Other physical parameters of layers material. 
These include degree of compaction, porosity, 
permeability, viscosity etc. 
6. Properties of the ground subgrade where the 
considered packet is located on. Fig. 2 shows the 
Pasternak’s subgrade model that is described by two 
parameters: shear modulus GS and “spring” stiffness rate 
k, but one can use models with less (Winkler foundation 
model) of more (Kerr subgrade model) parameters, 
however. 

All or some of these properties (include discretized 
version of mentioned functions) form a model 
parameters vector m=(m1,m2,…)T. Mathematical model 
of layered foundation formulated in displacement 
velocities can be expressed as an operator equation 

  A[m](v) = f

[m]. (1) 
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Here v=v(x)=u  is a vector-function of displacement 
velocities of packet points (point over symbol means as 
usual time derivative) defined in composite domain 

=12…K (i, i = 1,K – domain, holds by the 

i-th layer of the packet, K-th layer is in the bottom of 
packet), f[m](x) – volumetric forces vector, A[m](): 
Hv[m]Hf[m] – vector operator, which components 
defined as 

 Ai[m](v) = 
 ij[m](kl(v))

xj
,    i,j,k,l=1,2,3. (2) 

We use the summation over repeated indexes as is 
customary in tensor analysis. Components of stress 

velocities tensor   relates with small deformation 

velocity tensor components   by the defining relations 
(fundamental law of material) 

  ij =  ij[m]( kl). (3) 

It can be linear elastic law, Prandtl-Reuss plastic flow 
equations or other more sophisticated plasticity (or 
viscoelasticity) theory equations. Small deformation 
velocity tensor components defines through the 
displacement velocities by Cauchy-Green formulas 

  kl(v) = 
1
2



vk

xl
 + 
vl

xk
. (4) 

Structure of functional space Hv[m] of displacement 
velocities v=v(x) defines by the system of restrictions: 
boundary conditions 

  n(x) = T

[m](x)= (T


1(x), T


2(x), T


3(x))T,  

 xS, i=1,2,3, (5) 

 v(x) = vu[m](x) , xSu, S==SSu, (6) 

(n is outer normal unit vector to the surface of the 
packet, ni=ijnj – coordinates of normal component of 
the stress vector) and condition of interaction between 
packet layers and between the packet and the subgrade. 
In case of hard concatenation («gluing») of layers i and k 
on the contact surface Sik[m]=ik we have 

 v(i)(x) = v(k)(x), xSik; (7) 

in case of contact with slipping of scabrous layers 
according to Amontons-Coulomb friction model 

 


vn

(i)(x) = vn
(k)(x),

 (i)(x) = ik[m](x) n
(k)(x),

 xSik, (8) 

where n is normal vector to the contact surface Sik, n 
is unit tangent vector determined as 

(x) = 
v

(k)(x)–v
(i)(x)

|v
(k)(x)–v

(i)(x)|
, v

(i)=v(i)–vn
(i), 

 v
(k)=v(k)–vn

(k), xSik, (9) 

ik=ik[m](x) is friction coefficient between layers i and 
k. 

Winkler model of packet interaction with the 
subgrade defines by the relation (we neglect friction 
between K-th packet layer and the subgrade) 

 


 n

(K)(x) = kS[m](x)vn
(k)(x),

 (K)(x) = 0,
 xSK, (10) 

where SK is the contact surface of the K-th layer and the 
subgrade, kS[m](x) is the local stiffness coefficient of the 
subgrade. 

Equation (1) forms so-called “forward problem”: 
having certain parameters vector m one needs to obtain 
the vector of displacement velocity v(x) 

 v = (m), (11) 

where (): HMHv[m] is a forward operator, HM is 
model parameters vector space. For an “inverse 
problem” formulation one should takes into account an 
operator (): Hv[m]HD, that for each v(x) defines a 
“model data vector” of the problem 

 d = (v) = ((m)) = g(m), (12) 

where HD is a model data space, g(): HMHD is a 
“forward problem operator”. As a model data, one 
should consider a radial velocity vi of certain roadbed 
point Ai, scanned by each used deflectometer (Fig. 1): 

 di = lijvij, j=1,2,3,   i=1,2,…,Kd, (13) 

where lij are direction cosines of i-th deflectometer 
scanning ray, Kd is number of deflectometers used. 

The essence of inverse problem is “to invert” the 
forward problem operator g(): for each (may be noisy) 
measured by the deflectometers vector d find the 
corresponding model parameters vector m, that satisfies 
(12). 

Method for solving the formulated inverse problem is 
proposed in [13]. This method is based on information-
probabilistic (Bayesian) approach to solving the inverse 
problem [12]. According to this approach, solution of 
this problem is a posterior probability density of 
estimated model parameters vector m. For this approach, 
the “prior” (or “a priori”) information about estimated 
parameters m, expressed as a correspondent prior 
probability density, plays a very important role. Without 
such information sometimes is impossible to obtain the 
qualitative inverse problem solution. 

3. Multigrid solutions of the forward 
problem 

To investigate the solutions of the considered inverse 
problems for a layered foundation, gradient methods to 
minimize a certain residual functional, and statistical 
modeling methods (Monte-Carlo) to study the behavior 
of this functional near extreme points are used. When 
using any of these methods, the key issue is the effective 
solution of the “direct problem” for layered packet with 
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specified characteristics defined by a certain (fixed) 
model parameters vector m. For this purpose, one should 
solve two such main associated issues. 

1. Choose an appropriate discretization scheme. 
2. Develop fast numerical algorithm for solving 

obtained system of grid equations. 
The choice of a successful discretization scheme 

determines the accuracy of the obtained solution of a 
differential problem (1). For both the most popular Finite 
Element and Finite Difference Methods the building of 
appropriate computational grid defines the quality of 
entire scheme of discretization. In [14] the problem of 
creating practical grid for an elastic layered packet was 
considered. The recommendations are: 1) use a regular 
grids as the most suitable for further calculations; 2) use 
interpolation formulas as grid construction procedures 
(Fig. 3). 

 

Fig. 3. Regular grid created for the layered packet by 
interpolation formulas technique. 

As a result of the discretization process we obtain the 
system of algebraic equations 

 Ahvh = fh (14) 

(h is a discretization parameter), that approximates the 
source differential problem (1). The main task is to 
effectively (numerically) solve the system (14). 

Today one of the most advanced for such purpose 
(especially for elliptic problems like (1)) is a Multigrid 
Method [15], first proposed by R.P. Fedorenko in 1962. 
It’s efficiency is defined by the fact, that it needs O(N) 
arithmetic operations to approximately solve (14) “at the 
level of discretization error”, where N is the number of 
unknowns in the system (14). This method is based (in 
its classical Fedorenko’s formulation) on two main ideas. 
First, instead of solving the system (14) on only one grid, 
one considers the discretization of the problem (1) on the 
system of nested grids that forms a “hierarchy of grid 
levels”. So the discretized problems 

 Akvk = fk,     k=1,2…,Kmax (15) 

are considered, where the index k=0 (the lowest grid 

level) corresponds the coarsest grid and the system (15) 
contains a little number of unknowns, that provides the 
fast solving of it by a direct method (Gauss or Cholesky 
decomposition). Index number k=Kmax (the highest grid 
level) corresponds the finest grid (grid with the smallest 
mesh-size), that is our goal for system (14) to solve. 

The solving procedure begins from the lowest grid 
level k=0. Then obtained solution interpolates to the 
higher level k=1, where it is refining, and then corrected 
solution interpolates to the next level k=2 and so on. This 
procedure makes up the essence of so-called Full 
Multigrid (FMG) Algorithm. 

The method of précising the approximate solution on 
the level k is the most sophisticated issue in entire 
multigrid theory. The main idea of this method is to use 
the means of coarser grids for correction of the solution 
on the current level k. This procedure calls Coarse Grid 
Correction (CGC) Algorithm or CGC-Cycle. 
Algorithm CGC_CYCLE(k, fk, u

(0)
k ,1,2,) 

/* Algorithm for approximate solution of a system of linear 
equations Akvk=fk, where k is current grid level, v

(0)
k  is initial 

approximation, Ak is system matrix, fk is right-hand side, 1 is 
number of pre-iteration of relaxation scheme, 2 is number of 
post-iterations,  is a cycle parameter, v

(1)
k  is refined 

approximate solution. */ 
Begin 
1. If k=0, then the system (15) is solved by direct method. 
As a result, one obtains the value v

(1)
k . Go to step 9. 

2. (Pre-relaxation). Perform 1 smoothing iterations by 
the formula 

 v~
(0)
k   S1

k v
(0)
k , (16) 

where Sk is a relaxation scheme operator. 
3. Calculate the residuals by 

 rk  Akv~
(0)
k   fk. (17) 

4. Projection of the residuals to the coarser grid (level 
k1) 

 rk1  Rk1
k rk, (18) 

where Rk1
k  is a projection operator from finer to coarser 

grid. 
5. Calculation and refinement of the correction vector 
ek1 on the coarser grid, that is solving the coarse grid 
equation 

 Ak1e
k1 = rk1 (19) 

recursively by the same algorithm, beginning with null 
initial approximation 

e~
(0)
k   0 

For i1 to  do 

e~
(i)
k1  CGC_CYCLE(k1, rk1, e~

(i1)
k1 , 1, 2, ) 

6. Interpolation of the obtained correction e~
()
k1 to the 

finer grid (level k) 

 ek  P
k
k1e~

()
k1, (20) 
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where P
k
k1 is an interpolation operator from coarser to 

finer grid. 
7. Correction 

 v̂
(1)
k   v~

(0)
k  + ek. (21) 

8. (Post-relaxation). Perform 2 additional smoothing 
iterations by 

 v
(1)
k   S2

k v̂
(1)
k . (22) 

9. Return the result v
(1)
k . 

End 
Full Multigrid Algorithm can be formulated as 

follows. 
Algorithm FMG_CYCLE(1,2,,k) 
/* Algorithm for approximate solution of a system of linear 
equations AKmaxvKmax=fKmax on the highest grid level Кmax. 
Parameters 1, 2,  are the same as in algorithm 
CGC_CYCLE, k is a number of CGC-cycles performed on 
the grid level k. */ 
Begin 

1. Solve the system (15) by direct method on the grid 
level k=0. As a result we obtain the value v

(1)
0 . 

For k=1 to Kmax do 
Begin 
2. Interpolation of the obtained approximate solution 

v
(1)
k1 to the finer grid: 

 v
(0)
k   P

k
k1v

(1)
k1. (23) 

Interpolation operator may be differ from one used in 
CGC-cycle. 

3. Refining of the solution on the grid level k. 

v
(1)
k  v

(0)
k . 

For i1 to k do v
(1)
k   CGC_CYCLE(k, fk, v

(1)
k , 1, 

2, ) 
End 
4. Return the result v

(1)
Kmax. 

End 
The main goal of the FMG-algorithm is to obtain an 

approximate solution v
(1)
Kmax, that satisfied 

 ||vKmaxv
(1)
Kmax||  сh

2

Kmax, (24) 

where vKmax is the “exact” solution of (15) and hKmax is a 
characteristic mesh-size on the highest grid level (we 
assume bilinear finite elements used, that provide the 
second order of approximation), constant c is 
independent on the mesh-size. 

Although the theory promises O(NKmax) complexity 
of the FMG-algorithm for achieving (24) for wide 
classes of problem, in practice it’s not easy to get such 
efficiency for a specific problem. It may be related with 
incorrect choice of the parameters for CGC- and/or FMG 
algorithms in problems where physical or geometric 
anisotropy is presented. Therefore, the issues of a 
suitable tuning of the multigrid algorithm components 
play a key role in successful application of this method. 

In [16] the question of appropriate choice of the 
multigrid parameters for the boundary-value problem (1) 

for the multi-layered foundation is investigated. This 
problem has not physical but geometric anisotropy: the 
length of the roadbed area considered is larger than its 
width and height. The determined parameters of the 
Multigrid Algorithm are: type of the relaxation operator 
(16); interpolation and projection operators (20), (18); 
method for creating the coarse-grid matrix Ak on the 
levels k<Kmax, numbers 1, 2 of pre- and post-
relaxation, number  of correction refinement 
procedures, numbers k of précising steps in FMG-
algorithm. 

It has been established, that the best choice, taking 
into account computational work expenses, is as follows. 

Relaxation scheme is block-wise Gauss-Seidel 
operator on vertical lines, 1=1, 2=0, =1 (such 
variation of the CGC-cycle calls “V-Cycle”), k=3. The 
rest of parameters is typical. This choice of parameters 
provides the standard O(NKmax) multigrid efficiency. 

Prospects for further research. The following areas 
of improvement of methods for assessing the diagnostic 
parameters of the roadbed are promising. 

1. Because of significant importance of the “prior” 
information for perfect inverse problem solution 
analysis, the main directions for further research may 
concern the methods of involvement of the information 
obtained by another considered methods of diagnostic 
parameters estimation (georadation, seismic, etc.), 
creation of the detailed roadbed maps with such data and 
precise binding technique development (including 
geolocation methods). 

2. Improvement of inverse problem solving 
approaches (including optimal discretization procedures 
for unknown parameters vector m) for obtaining the best 
resolution. 

3. Development of modern approximation technique 
(including neural networks etc.) for fast online 
interpretation of scanning data. 
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