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Abstract—It is proved that, in the space C2π, for all k, n ∈ N, n > 1, the following inequalities hold:(
1 − 1

2n

)
k2 + 1

2
≤ sup

f∈C2π

f �=const

en−1(f)
ω2(f, π/(2nk))

≤ k2 + 1
2

.

where en−1(f) is the value of the best approximation of f by trigonometric polynomials and ω2(f, h)
is the modulus of smoothness of f . A similar result is also obtained for approximation by continuous
polygonal lines with equidistant nodes.
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Suppose that

• C2π is the space of (2π)-periodic real-valued continuous functions f with norm

‖f‖ = max{|f(x)| : x ∈ R};

• en−1(f) = infTn−1 ‖f − Tn−1‖ is the value of the best approximation of f in this space by
trigonometric polynomials Tn−1 of degree at most n − 1, n ∈ N;

• ω2(f, h) = sup|t|≤h ‖∆2
t f‖ is the value of the modulus of smoothness of f at a point h, h ≥ 0,

where

∆2
t f(x) = f(x + t) + f(x − t) − 2f(x)

is the second difference of f at a point x with step t.
{th1:v932

Theorem 1. For all k, n ∈ N, n > 1, the following inequalities hold:(
1 − 1

2n

)
k2 + 1

2
≤ sup

f∈C2π
f �=const

en−1(f)
ω2(f, π/(2nk))

≤ k2 + 1
2

. (1) {eq1:v932

{cor1:v93
Corollary 1. For all k ∈ N, the following relations hold:

sup
n

sup
f∈C2π
f �=const

en−1(f)
ω2(f, π/(2nk))

=
k2 + 1

2
.
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SHARP CONSTANT IN JACKSON’S INEQUALITY 117

Upper bounds for the values of best approximations of functions in terms of the values of their moduli
of continuity of various orders are called the Jackson’s inequalities. Well-known results concerning
sharp Jackson inequalities (i.e., inequalities with sharp constants) for functions of one variable can be
found in [1]–[8]. In particular, in the case k = 1, inequalities (1) were proved in [9], [10] (upper bound)
and [6] (lower bound). Also note the paper [11] in which, for other values of the argument of the modulus
of smoothness, upper bounds for sharp constants were obtained.

Suppose that M is an arbitrary subspace in C2π containing constants,

e(f ;M) = inf{‖f − g‖ : g ∈ M}
is the value of the best approximation of f by the subspace M ,

W2 = {f ∈ C2π : f ′ ∈ AC, f ′′ ∈ C2π, ‖f ′′‖ ≤ 1},
and e(W2;M) is the value of the best approximation of the class W2 by the subspace M .

{lem1:v93
Lemma 1. 1) For any f from C2π, the following inequality holds:

e(f ;M) ≤ 1
2

inf
h>0

(
1 +

2e(W2;M)
h2

)
ω(f, h); (2) {eq2:v932

2) for any δ > 0, the following inequalities hold:

δ2

2
≤ sup

f∈C2π
f �=const

e(f ;M)
ω2(f, (2e(W2;M))1/2/δ)

≤ δ2 + 1
2

. (3) {eq3:v932

Proof of Lemma 1. For h > 0, suppose that

Sh(f, x) =
1
h

ˆ h/2

−h/2
f(x + t) dt

is the Steklov mean of f with step h, and

Sh2(f, x) := Sh(Shf, x) =
1
h2

ˆ h

−h
(h − |t|)f(x + t) dt

is the Steklov mean of f of second order. Then

|f(x) − Sh2(f, x)| ≤ 1
h2

ˆ h

0
(h − t)|∆2

t f(x)| dt,

‖f − Sh2f‖ ≤ 1
h2

ˆ h

0
(h − t)ω2(f, t) dt ≤ 1

2
ω2(f, h).

Further,

‖D2(Sh2f)‖ =
∥∥∥∥∆2

hf

h2

∥∥∥∥ ≤ ω2(f, h)
h2

, e(Sh2f ;M) ≤ 1
h2

ω2(f, h)e(W2;M).

Now, to find an upper bound for the approximation value e(f ;M), we use the intermediate approxi-
mation of f by smoother functions Sh2f :

e(f ;M) ≤ ‖f − Sh2f‖ + e(Sh2f ;M) ≤ 1
2

(
1 +

2
h2

e(W2;M)
)

ω2(f, h). (4) {eq4:v932

Since the value of h is arbitrary, we obtain (2). Note that this method was used in [9] to find
estimate (4) for the approximation by polynomials.

If we put h = (2e(W2;M))1/2/δ in (4), then we obtain the upper bound in (3). We obtain the lower
bound in (3) by restricting ourselves to the approximation of smooth functions f from C2π and using the
inequality ω2(f, h) ≤ ‖f ′′‖h2.

Lemma 1 is proved.
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118 PICHUGOV

Proof of Theorem 1. In the case of approximation by trigonometric polynomials using the Akhiezer–
Krein–Favard theorem (see, for example, [7]), we obtain

sup
f∈W2

en−1(f) =
π2

8n2
, (5) {eq5:v932

and then the upper bound in (3) is of the form

sup
f∈C2π

f �=const

en−1(f)
ω2(f, π/(2nδ))

≤ δ2 + 1
2

. (6) {eq6:v932

Let us show that, for δ ∈ N, this estimate cannot be improved for all n.
To find lower bounds for the Jackson constants in the construction of the following functions we use

an idea of Korneichuk [1], [2], which was realized in [6] for the moduli of smoothness for δ = 1.
Let us fix

k, n ∈ N, n > 1, ε ∈
(

0,
1
2

]
,

and set

x0 = 0, xν = νh − (n − ν)β, ν = 1, . . . , n, h =
π

n
, β ∈

(
0,

4ε
n2(k2 + 1)

)
.

By construction,

xν+1 − xν = h + β, xn = π.

Consider an arbitrary function f from C2π satisfying the conditions

f(−x) = f(x), f(0) = 0, f(xν) = (−1)ν+1 k2 + 1
2

, ν = 1, . . . , n. (7) {eq7:v932

To find a lower bound for en−1(f), we use the polynomial

Tn−1(x) =
k2 + 1

2n
sin(n − 1/2)x

2 sin(x/2)
.

For ν = 0, 1, . . . , n, we have (see [1], [2])

f(xν) − Tn−1(xν) = (−1)ν+1

(
k2 + 1

2
− k2 + 1

4n

)
+ µν ,

where |µν | < ε; hence, taking into account the fact that f is even and using the Vallée-Poussin theorem,
we obtain

en−1(f) ≥ k2 + 1
2

(
1 − 1

2n

)
− ε. (8) {eq8:v932

Let us now define the function f(x) on the whole axis so that, along with conditions (7), the following
condition also holds:

ω2

(
f,

π

2nk

)
= 1. (9) {eq9:v932

First, let us construct f(x) on the closed interval [x1, γ], where γ = (3/2)(h + β) − nβ is the midpoint
of the closed interval [x1, x2], specifying it the polygonal line uniquely defined by its values at the nodes:

f(γ) = 0, f

(
x1 + j

h

2k

)
=

k2 + 1
2

− j2

2
, j = 0, . . . , k,

f

(
x1 + j

h

2k
+

β

2

)
=

k2 + 1
2

− (j + 1)2

2
, j = 0, . . . , k − 1.

(10) {eq10:v93
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SHARP CONSTANT IN JACKSON’S INEQUALITY 119

Let us continue f(x) to the closed interval [γ, x2] as an odd function with respect to the point γ:

f(γ + x) = −f(γ − x), x ∈
[
0,

x2 − x1

2

]
. (11) {eq11:v93

Further, we set

f(x) = −f(x − h − β), x ∈ [x2, π],
f(x) = max{0; f(2x1 − x)}, x ∈ [0, x1],

f(−x) = f(x), x ∈ [−π; 0],
f(x + 2π) = f(x).

(12) {eq12:v93

This defines the continuous 2π-periodic function satisfying conditions (7). It is easy to see that
condition (9) also holds: since f(x) is a polygonal line, it follows that, to calculate its modulus of
smoothness, it suffices to calculate the increments of the function f at its nodes.

Since ε is arbitrary, relations (8) and (9) imply the lower bound of the Jackson constant in (1).
Theorem 1 is proved.

{rem1:v93
Remark 1. In the proof of Lemmas 1, we did not use the specific properties of the metric of C2π; in
particular, relations (3) are also valid in the space L1[0, 2π]. Further, the analog (5) of the Akhiezer–
Krein–Favard Theorem also holds in L1[0, 2π] (see, for example, [7]). Therefore, in the space L1[0, 2π],
the following upper bound similar to (6) is also valid:

sup
f∈L1[0,2π]
f �=const

en−1(f)L1

ω2(f, π/(2nδ))L1

≤ δ2 + 1
2

.

However, we do not know the exact values of the Jackson constants for the moduli of smoothness in
this space for any δ > 0.

{rem2:v93
Remark 2. Suppose that Xn−1,2(f) are the Favard sums of degree n − 1 of order 2 for the function f
(see, for example, [7]). Then

L̃n−1(f) := S(π/(2nk))2 ◦ Xn−1,2(f)

is the best linear method for approximating functions among all linear polynomial methods Ln−1 in the
sense that, for any k ∈ N,

sup
n

inf
Ln−1

sup
f∈C2π

f �=const

‖f − Ln−1(f)‖
ω2(f, π/(2nk))

= sup
n

sup
f∈C2π

f �=const

‖f − L̃n−1(f)‖
ω2(f, π/(2nk))

=
k2 + 1

2
.

This immediately follows from the proof of the upper bound in Theorem 1 and the fact (see, for
example, [7]) that

en−1(W2) = sup
f∈W2

‖f − Xn−1,2(f)‖.

It is easy to calculate the multipliers of the method L̃n−1: if fν are the complex Fourier coefficients
of f and

L̃n−1(f, x) =
∑
|ν|<n

αk

(
ν

n

)
fνe

iνx,

then

αk(t) = 4k2

(
sin

π

4k
t

)2 cos(πt/2)
(sin(πt/2))2

, |t| ≤ 1.
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In particular (see [9], [10], [6]),

α1(t) = 1 −
(

tan
π

4
t

)2

, α2(t) =
1 − (tan(πt/4))2

(cos(πt/8))2
.

Let us also consider the approximation of functions by the subspace S2n of periodic continuous
polygonal lines with the 2n equidistant nodes

yν =
π

2n
+

νπ

n
, ν ∈ Z,

on the period [−π, π].
{th2:v932

Theorem 2. For all k, n ∈ N, n > 1, the following inequalities hold:(
1 − 1

2n

)
k2 + 1

2
≤ sup

f∈C2π
f �=const

e(f ;S2n)
ω2(f, π/(2nk))

≤ k2 + 1
2

. (13) {eq13:v93

{cor2:v93
Corollary 2. For all k ∈ N, the following relations hold:

sup
n

sup
f∈C2π
f �=const

e(f ;S2n)
ω2(f, π/(2nk))

=
k2 + 1

2
.

Proof. Since (see [11])

e(W2;S2n) =
π2

8n2
,

we see that the upper bound in (13) follows from (3).
To find the lower bound, we consider the approximation of the function f constructed in the proof of

Theorem 1 (see (7), (10)–(12)). We shall use the duality relation for approximation by splines of minimal
deficiency [12]; in our particular case, this relation can be expressed as

e(f ;S2n) = sup
{ˆ π

−π
f(x) dg1(x) : Var g1(x) ≤ 1, g2(yν) = const, ν ∈ Z

}
, (14) {eq14:v93

where g2(x) is the antiderivative of g1(x), which is zero in the mean, and Var g1(x) is the variation
of g1(x) on the period.

To find the lower bound for e(f ;S2n), we construct a piecewise constant function g1(x) as follows:
first, we define the auxiliary function ψ(x) on the period [−π, π] as an even continuous polygonal line
with zeros at the points yν and the vertices at the points xν .

For x ∈ [0, π], let

ψ(x) := cν(x − yν), x ∈ [xν−1, xν ], ν = 1, . . . , n.

The continuity condition at the point xν+1 means that

cν+1 = −cν
π/(2n) − (n − (ν + 1))β
π/(2n) + (n − (ν + 1))β

.

Set c1 = −1; then, for ν = 2, . . . , n,

cν = (−1)ν
ν−1∏
j=1

π/(2n) − (n − j)β
π/(2n) + (n − j)β

. (15) {eq15:v93

The function ψ′(x) is piecewise constant and

Var ψ′(x) = 4
n∑

ν=1

|cν |.
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SHARP CONSTANT IN JACKSON’S INEQUALITY 121

Set

g2(x) =
ψ(x) − ψ0

4
∑n

ν=1 |cν |
, where ψ0 =

1
2π

ˆ π

−π
ψ(x) dx.

Then g2(x) is zero in the mean, g2(yν) = const, ν ∈ Z, and Var g1(x) = 1. Since

|cν − cν+1| = |cν | + |cν+1|,
(see (15)), it follows from (14) that

e(f ;S2n) ≥
ˆ π

−π
f(x) dg1(x) =

1
4
∑n

ν=1 |cν |
2
(n−1∑

ν=1

|cν − cν+1| + |cn|
)

k2 + 1
2

=
1

4
∑n

ν=1 |cν |

(
4

n∑
ν=1

|cν | − 2|c1|
)

k2 + 1
2

=
(

1 − 1
2
∑n

ν=1 |cν |

)
k2 + 1

2
.

Equality (15) implies that |cν | → 1 as β → 0. This yields the lower bound in (13). Theorem 2 is
proved.

It is possible that the assertion of Theorem 2 remains valid in the case of approximation by splines of
minimal deficiency and any order r ∈ N. In this case, the upper bound in (13) holds and it suffices only
to prove the lower bound.
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