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Significance effects of railway track eccentricity on
railway span vibration character by locomotive
moving with various speeds are investigated. The
mathematical model of the eccentricity of a railway
track on the span of railway bridges is proposed. The
dynamic analysis of three-dimensional girder systems
based of the Newton-Euler differential nonlinear
equations modeling aspects are represented.
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INTRODUCTION

During operation of the reinforced-concrete
spans with a ballast bridge road, they are subject to
defects of various kinds leading to the increase of
loading on separate load-bearing structure
elements. A displacement of the rail track axis
relative to the bridge axis (an eccentricity) is one of
the most widespread defects. The information on
dynamic work of such spans is practically absent in
the scientific literature that requires the conduction
of additional research.

EULER-LAGRANGE EQUATIONS OF MOTION

The girder structure of a span is divided into
parts within which the cross-sections of elements
and bending stiffnesses are considered as constants.
Each part of a girder is simulated by a solid body
with corresponding geometrical and inertial
characteristics and can have, in general, spatial
translation and rotary motions. Solid bodies are
connected to one another by means of elastic
bracings — rods with stiffness characteristics of an
initial girder design (Fig. 1).

The mathematical model of vibrations for the s -
th body of a "bridge-train" system is led to the first
order differential equations based on the energy
conservation laws in the form of Euler-Lagrange
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where T is kinetic energy of a system; n is
quantity of generalized coordinates; ®, is quasi-

velocity; Q. is the generalized force referred to

S
quasicoordinate m_; y, are Boltzmann three-

index symbols [1].

The supplementary conditions considering the
kinematics of system motion are necessary for a
solution of the system of differential equations (1):
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where g are displacements of centers of mass of
system elements (generalized coordinates); b,, are

coefficients for expression of quasi-velocities
components on directions of generalized
coordinates.

Let us take the linear and angular velocity vector
components to the axes of a global coordinate
system as quasicoordinates [2]:
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The partial differentials of kinetic energy of a
system element with respect to the mentioned
quasi-velocities o are estimated as:
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Their derivatives with respect to time will be
equal to:
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As a result, the coordinate mode of the relative
motion equations (1) - (2) in a matrix form is given

[3]:
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S, = {cok : vk} is a block vector of derivatives of
kinematic parameters; ®, = {wx o, mz} and

v = {vx v, vz} are vectors of angular and linear

velocities of the local coordinate system O, linked
with the element relative to the global coordinate
system 0,; X, ={x y z} and
a, = {ao a, a, a3} are a position vector of the

coordinate system O, relative to O, and Rodrigo-

Hamilton parameters, which define orientation of
the system O, .

It is possible to represent block matrices U; and

S,: with the inertial and kinematic components

contained into expressions (11) in the following
form:
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where U, , ®,, A, are matrices with elements of

the linear and angular displacements, Rodrigo-
Hamilton parameters of the coordinate system O,

relative to O,; J, is a matrix of inertia of an

asymmetric solid body in the local coordinate
system O, :

0 -u, u, 0 -9, o,
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—u, U, 0 -0, 9, 0
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Using of quaternion matrices (13) - (14) allows
clear representing a symmetry of the equations (8) -
(10) in the matrix form.

Thus, the dynamical equations of a solid body
three-dimensional motion are a basis for simulating
the complex-oriented spatial girder structures and
the rolling stock as a system of the coupled solid
bodies taking into account inertial and stiffness
properties, elastic and inelastic impedances.
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Fig. 1. Three-dimensional rod system: a) — the scheme of
reducing the section inertia moments to nodes; b) — inertia
ellipsoids of nodes



In determination of inertial characteristics of a
node it is necessary to keep in mind that the node is
an abstract concept and in a real system only a rod
as solid (deformable or non-deformable) body can
have a moment of inertia. Therefore, by analogy
with stiffness characteristics the inertial parameters
of the j-th rod are also to be determined in the local
coordinate system O, combined with its center of

gravity (Fig. 1, a). In so doing, each node joined by
arod gets a half of its concentrated mass.

The inertia tensor form (14) is suitable for
description of inertial characteristics of both
separate rod of a structure and a node. In case of
any oriented rod it is necessary to rotate its tensor
of inertia by means of the corresponding rotational
matrix [4] and, using the Huygens-Steiner theorem
[5], transfer to the node, then all the tensor
components will correspond to the axes of global
coordinate system O, .

Summing over the tensors of inertia for all rods
converging in the i-th node leads to a matrix (14).
However using its components in the equations (8)
is only possible for systems with the symmetry in
all directions. In this case the tensor of inertia is
defining axial moments of inertia only, and at the
same time they are the principal moments of inertia
(centrifugal ones equal to zero):

J=J. JQ:JW;

Jy=J,. (15)

Various factors can cause the occurrence of
centrifugal moments of inertia. For example, if in a
three-dimensional rod system all elements have
principal moments of inertia only but at least one of
nodes has coordinates x#0, y#0, z#0 then in

the adjacent nodes we shall obtain all nine nonzero
moments of inertia ("full" tensor) (14). In this case
for search of the principal moments the cubic
equation for matrix of inertia eigenvalues are to be
used [5]:
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where J* is one of three desired principal moments
of inertia (the equation root).

Values J,, J,, and J; are solutions of the
equation (16). This process is also called as a

matrix diagonalization. The new tensor containing
only principal moments of inertia looks like:

J 0 0
J'={0 J, 0], (17)
0 0 J
or in the vector form:
J'={J, J, J5}. (18)

It is significant that after the fulfilled
transformations the principal axes of inertia (the
conjugate ellipsoid diameters) and the axes of
global coordinate system O, do not always
coincide. For determination of the principal axes of

inertia the system of algebraic equations is to be
used [5]:
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where the meaning of value J* remains the same
as in (17).

By sequential substituting into (19) the earlier
found values of principal moments of inertia J,,

J,, J, instead of J*, one can get three groups of
coordinates x, y, z of points lying on the
principal axes of inertia. The unitary isomeric
rotation matrix R, is consisting of cosines of

angles between these vectors and the of global
coordinate system axes. By rotating a vector (18)
with its help, we have:

JO =R = {0 I IO (20)

where T is a symbol of matrix transposition.

Taking into account (20) and solving each of the
equations  (8):with respect to an angular
acceleration vector, we get:
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Using formulas (19), (20) of the general tensor of
inertia it is possible to obtain the principal moments
of inertia of separate elements and to consider them
in the converted form (21) in motion equations (8).



SIMULATION OF SPAN WITH TRACK
ECCENTRICITY

The generalized force (1) contains components
of exterior forces a principal vector, the principal
moment of forces and responses of the connections
applied to a node of system "bridge-train". Interior
forces and responses in elements of a superstructure
are convenient for defining by means of a finite
element method noted in the form of a
displacement method.

In this case it is necessary to add the common
algorithm of calculation (8) - (10) with following
operations: prepared local stiffness matrixes of
beam elements dividing a superstructure on
sections of the equal length; prepared the common
stiffness matrix of system, evaluated a flexibility
matrix of system; solving system of the canonical
equations of a method of transitions; finding nodal
transitions.

The introduced approach is realized in bundled
software for calculation dynamic of bridge
constructions taking into account a velocity of a
load motion and various dynamic factors of
disturbance [4].

In order to construct a design model of girder
span with rail track eccentricity let’s choose from
the whole structure a rod connecting nodes i =1, 2

of the structure. And let the generalized
concentrated force factor

F,= {Fx F,E,M M, MZ} moves with the set
constant velocity within the rod length (Fig. 2).
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Fig. 2. Loading on a rod having eccentricity

The force factor trajectory of movement is a
straight line, which generally does not coincide
with the axial line of a rod [6].

The node points 1,, 2, of trajectory are shifted

from the base nodes of structure i=1,2 by the

distances corresponding to space vectors El, Ez~
In the fixed instant 7, the force factor position in
some point P, is known from its law of movement.

The force transfer to a rod in the point P is to be
substituted by the set of equivalent force factors
taking into account eccentricity e, presented in the
coordinate form:

F.p,=F; Mx,PzMx+ery—Fyez;
Fy’P:Fy; My,P:My_erx+erz; (22)
F ,=F; MZ,P:MZ+FyeX—ery.

Upon finding out the loading point P located on
the axis line of a rod, the components of force (22)
are to be added to the general vector of external
loads Fy.

THE MOVING LOADING ACCOUNT

As an example, let us consider the motion of a
locomotive VL8 on a span. Taking into account [7]
for longitudinal, lateral and vertical contact forces
between a span and wheelsets of locomotive VLS,
we have got:

F P _F(V) FW.
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M, p=M_+F, e, ~F, pe.:
My,P :My —Fz,Pex +F, Pes

M, ,=M_+F, e —F, e,

Thus, the locomotive effect on a bridge span is

modeled by force components F ,F o

When a locomotive enters on a span (a time step of
calculation ¢, ), these forces initiate the transition of

the span into stressed-and-strained state [8].
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Fig. 3. Spatial design model of a reinforced-concrete span



The design model of a reinforced-concrete span
with a length of 22.9 m is accepted in the form of
the three-dimensional rod system composed of 13
rods and 10 nodes (42 degree of freedoms, 120
differential equations of movement) that can make
vertical, lateral, longitudinal, and torsional

vibrations (Fig. 3). The step of integration is 107
seconds.

u: mm o

{e

le,=10 1. =50 e, - 100

T T T
[} 20 (L] 150 L] 250 300 5o A00

v, km/h
uy_ . mm b

.20

018 - i

016
0.14
012
010
ong | |2 H ‘; ]
o064 L= H ] 1 ]
00
0.0z
000
002 o
) - “‘f‘:x“ ] _ o
006 y =t
008 ’m e, =10
0 50 (D] 150 200 I 250 300 350 I 1(;')

v, km/h

Fig. 5. Extremes of the vertical (a) and lateral (b) span
displacements

Let’s consider a variant of even displacement of
a rail-sleeper lattice in the transverse direction. In

this case the horizontal eccentricity eil)

girders B1, B2 is identical (Fig. 4).
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Fig. 4. The scheme of horizontal eccentricity on a bridge span

The eccentricity magnitude is accepted equal
e, = 0;10; 50,100 mm [9].

For determination of effect of the track
eccentricity on the character of vibrations of a span
each value e, is to be analyzed within the range of

loading movement velocity 10...400 km/h .
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Fig. 6. Extremes of the longitudinal (a) and torsion (b) span
displacements

THE ANALYSIS OF CALCULATION RESULTS

The results gained testify that the vertical span
shifts uz (deflections) at the simultaneous
accounting the spatial dynamic behavior of a
structure and loading movement velocity have
nonlinear dependence on the magnitude of rail track
eccentricity (Fig. 5, a). In all the calculations the
relatively high shifts are obtained at the loading
movement velocity of 200km/h. The greatest

range of extremes of vertical shifts is observed at
the eccentricity e, =50 mm; in other cases the uz
magnitude  variations have relatively low
amplitudes. The lateral span displacements uy have
a maximum if the rail track shift magnitude

eylemm.



The range of maximum displacements in the
longitudinal direction at the loading movement
velocity 10...100km/h can be considered as

stationary. Further increasing the velocity (to
260...270 km/h ) is accompanied by essential

magnification of the wux displacements and the
maximum amplitude of structure longitudinal
vibrations (Fig. 6, a). The value of displacements
decreases and returns to the initial values at
velocity of 400km/h. Generally, the track

eccentricity magnitude practically does not
influence the longitudinal and torsion vibrations of
a girder bridge span.

CONCLUSION

In simulation of dynamic behaviour of a spatial
rod system, some nonlinear components of motion
of nodes can be lost without taking into account the
moments of inertia of the nodes. In Euler-Lagrange
differential equations the interconnection between
an angular velocity and an angular acceleration of a
node in components with respect to the principal
axes of inertia that characterizes a certain
connection between vertical, horizontal, and
torsional vibrations of a structure and also the
energy distribution in a system is determined.

The combined application of the finite-element
method and the solid body dynamic equations in
dynamic computations allows estimating the effect
of rail track eccentricity on the space vibrations of
reinforced-concrete bridge spans. The influence of
mentioned features is shown at movement of the
single locomotive with a speed more than
200 km/h .

The analysis of dynamic work of reinforced-
concrete and metal spans with the rail track
eccentricity during the motion of freight and
passenger rolling stock, as well as the estimate of
influence of moments of inertia of separate
elements on spatial dynamics of bridge spans are
planned in the further research.
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VccnenoBaHo BIMSIHEE SKCLEHTPHCHTETA IYyTH Ha XapakTep KOJeOaHHil MPOJETHBIX CTPOCHHI NPH Pa3INYHBIX CKOPOCTSX JBHIKCHHUS
OJIMHOYHOTO JIOKOMOTHBA. [IpennoxkeHa MaTeMaTHIecKas MOZIeNb Ul y4eTa SKCIEHTPHCUTETa PeIbCOBOTO IyTH Ha MPOJIETHBIX CTPOSHUIX
JKEIe3HOJOPOXKHBIX MOCTOB. PaccMOTpeHBI HEKOTOpBIC AacCIIeKThl AWHAMHUYECKOrO pacdeTa CTEPXKHEBBIX CHCTEM C HCIOJIb30BAaHHEM
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