
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/338188348

Visualization of program development process

Conference Paper · September 2019

DOI: 10.1109/STC-CSIT.2019.8929774

CITATIONS

0
READS

107

2 authors:

Oleksandr Zhevaho

Dnipropetrovsk National University of Railway Transport

2 PUBLICATIONS 0 CITATIONS

SEE PROFILE

V. I. Shinkarenko

Dnipropetrovsk National University of Railway Transport

67 PUBLICATIONS 44 CITATIONS

SEE PROFILE

All content following this page was uploaded by Oleksandr Zhevaho on 07 April 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/338188348_Visualization_of_program_development_process?enrichId=rgreq-7abc1c1447e854e0cdb2ef5962db1e8f-XXX&enrichSource=Y292ZXJQYWdlOzMzODE4ODM0ODtBUzo4Nzc3MzM3NDc4ODQwMzRAMTU4NjI3OTQ0MTQxMw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/338188348_Visualization_of_program_development_process?enrichId=rgreq-7abc1c1447e854e0cdb2ef5962db1e8f-XXX&enrichSource=Y292ZXJQYWdlOzMzODE4ODM0ODtBUzo4Nzc3MzM3NDc4ODQwMzRAMTU4NjI3OTQ0MTQxMw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-7abc1c1447e854e0cdb2ef5962db1e8f-XXX&enrichSource=Y292ZXJQYWdlOzMzODE4ODM0ODtBUzo4Nzc3MzM3NDc4ODQwMzRAMTU4NjI3OTQ0MTQxMw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Oleksandr_Zhevaho?enrichId=rgreq-7abc1c1447e854e0cdb2ef5962db1e8f-XXX&enrichSource=Y292ZXJQYWdlOzMzODE4ODM0ODtBUzo4Nzc3MzM3NDc4ODQwMzRAMTU4NjI3OTQ0MTQxMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Oleksandr_Zhevaho?enrichId=rgreq-7abc1c1447e854e0cdb2ef5962db1e8f-XXX&enrichSource=Y292ZXJQYWdlOzMzODE4ODM0ODtBUzo4Nzc3MzM3NDc4ODQwMzRAMTU4NjI3OTQ0MTQxMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Dnipropetrovsk_National_University_of_Railway_Transport?enrichId=rgreq-7abc1c1447e854e0cdb2ef5962db1e8f-XXX&enrichSource=Y292ZXJQYWdlOzMzODE4ODM0ODtBUzo4Nzc3MzM3NDc4ODQwMzRAMTU4NjI3OTQ0MTQxMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Oleksandr_Zhevaho?enrichId=rgreq-7abc1c1447e854e0cdb2ef5962db1e8f-XXX&enrichSource=Y292ZXJQYWdlOzMzODE4ODM0ODtBUzo4Nzc3MzM3NDc4ODQwMzRAMTU4NjI3OTQ0MTQxMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/V_Shinkarenko2?enrichId=rgreq-7abc1c1447e854e0cdb2ef5962db1e8f-XXX&enrichSource=Y292ZXJQYWdlOzMzODE4ODM0ODtBUzo4Nzc3MzM3NDc4ODQwMzRAMTU4NjI3OTQ0MTQxMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/V_Shinkarenko2?enrichId=rgreq-7abc1c1447e854e0cdb2ef5962db1e8f-XXX&enrichSource=Y292ZXJQYWdlOzMzODE4ODM0ODtBUzo4Nzc3MzM3NDc4ODQwMzRAMTU4NjI3OTQ0MTQxMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Dnipropetrovsk_National_University_of_Railway_Transport?enrichId=rgreq-7abc1c1447e854e0cdb2ef5962db1e8f-XXX&enrichSource=Y292ZXJQYWdlOzMzODE4ODM0ODtBUzo4Nzc3MzM3NDc4ODQwMzRAMTU4NjI3OTQ0MTQxMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/V_Shinkarenko2?enrichId=rgreq-7abc1c1447e854e0cdb2ef5962db1e8f-XXX&enrichSource=Y292ZXJQYWdlOzMzODE4ODM0ODtBUzo4Nzc3MzM3NDc4ODQwMzRAMTU4NjI3OTQ0MTQxMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Oleksandr_Zhevaho?enrichId=rgreq-7abc1c1447e854e0cdb2ef5962db1e8f-XXX&enrichSource=Y292ZXJQYWdlOzMzODE4ODM0ODtBUzo4Nzc3MzM3NDc4ODQwMzRAMTU4NjI3OTQ0MTQxMw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

© 2019 IEEE

 CSIT 2019, 17-20 September, 2019, Lviv, Ukraine

https://doi.org/10.1109/STC-CSIT.2019.8929774

© 2019 IEEE. Personal use of this material is

permitted. Permission from IEEE must be obtained

for all other uses, in any current or future media,

including reprinting/republishing this material for

advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers

or lists, or reuse of any copyrighted component of this

work in other works.

© 2019 IEEE

 CSIT 2019, 17-20 September, 2019, Lviv, Ukraine

https://doi.org/10.1109/STC-CSIT.2019.8929774

Visualization of program development process

Viktor Shynkarenko

Department of Computer Information Technology

Dnipropetrovsk National University of Railway Transport

named after academician V. Lazaryan

Dnipro, Ukraine

shinkarenko_vi@ua.fm

Oleksandr Zhevago

Department of Computer Information Technology

Dnipropetrovsk National University of Railway Transport

named after academician V. Lazaryan

Dnipro, Ukraine

marakonec@gmail.com

Abstract—The aim of this paper is to improve the process of

program development using high-level languages. The practical

application in programming training is expected, especially at

early stages. The teacher gets an opportunity of visual monitoring

of the program development process, which means the active

participation in the formation of an effective student

programming style. The extension for Visual Studio, which

monitors the process of programming, is developed.

Keywords—stepwise refinement method, visual studio

extension, program development process, visualization,

programming training, programming style.

I. INTRODUCTION

One of the urgent problems of the educational process in
the field of information technologies is the low level of
practical skills of students’ in the development of computer
programs.

Modern training methods allow you to monitor and
evaluate only the final result, in the form of a running program
and a report with the text of the program, instead of the
program development process. Therefore, such an important
part as the process of writing a program remains without
proper attention.

There are a number of software tools for analyzing the
quality of program texts, but they analyze the finished texts
only, and there are no such tools for analyzing the
programming style.

In the process of learning the basics of programming, it is
important to identify the problems and assist in their
elimination, to control the independence and quality of
performance of tasks, to record the difficulties in the work of
each student, to reveal his/her hidden opportunities in
development of program texts. It requires the constant
supervision of students by the teacher. However, it is
practically impossible to monitor the individual features of
the programming process of each student during group
classes.

In order to implement an opportunity to measure the
characteristics of style of each student both in the classroom
and during individual work, we propose the automation of this
process with the use of specially designed extension to the
Visual Studio.

II. STEPWISE REFINEMENT METHOD

The high level of practical training in programming
implies the availability of effective style of the developer in
the process of developing algorithms and programs. It
includes: usage of the method of stepwise refinement,
decomposition skills, and compliance with programming
standards.

The principle of stepwise refinement was introduced by
Niklaus Wirth, who published the detailed article with the
example of using this principle in Communications of ACM
Journal in 1971 [1].

Stepwise refinement is the paradigm of developing a
complex program from simple, with the gradual addition of
parts [2, 3]. Programs must be written for people to read, and
only incidentally for machines to execute [4].

The deviation from the stepwise refinement method is
expressed in chaotic writing of the program text, making
changes to already written text fragments, and inability to add
comments timely. It should be noted that there are approaches
to execution of programs which do not involve the active use
of comments [5].

At the same time, such technologies as the technology of
literate programming of D. Knuth [6] suggest the active use of
comments where comments actually become the
documentation attached to the program.

The usage of decomposition skills is characterized by the
order of creation of new functions, ratio of function sizes, their
average size [7].

III. METHODS FOR OBTAINING THE INFORMATION ON

PROGRAM DEVELOPMENT PROCESS

One of the reasons for observing the development process of
the algorithm and text of the program by students is the
monitoring of independence in the performance of work. The
paper [8] proposes video-recording of the development process
in combination with an explanation and stepwise description of
all actions performed. But this approach is rather time
consuming one for both the student and the teacher.

In recent years there have been several reports of
successful use of Version Control Systems (VCS) in the
classroom programming [9]. However, the version control

© 2019 IEEE

 CSIT 2019, 17-20 September, 2019, Lviv, Ukraine

https://doi.org/10.1109/STC-CSIT.2019.8929774

system is not able to provide a comprehensive evaluation the
actual contribution of a student to the final result, since it does
not give the information on the process of development of the
program text. VCS only captures the history of code changes
between commits.

Today the only opportunity to analyze the style of work is
direct monitoring of the development process, but the teacher
is not able to control all students during classes. In order to
implement the ability to measure the characteristics of each
student's style during classes and individual work, we consider
the automation of such process through a specially designed
extension to the software development environment.

It is important that this tool will help to timely identify the
problems in the process of training of each student by
comparing with others, to reveal weaknesses in knowledge
and skills, and to help in their elimination. The collection of
changes occurring in the process of writing the program text
will help in analyzing the style.

One of the most common software development
environments is Microsoft Visual Studio. Using the system to
analyze the quality of the coding process in Visual Studio is
very convenient, because it is widely used both in production
and for training purposes.

The Visual Studio development environment is built on the
principles of automation and scalability, allowing developers
to integrate almost any new elements and interact with
standard and custom components [10].

IV. CONSTRUCTIVE COMPLEXITY OF PROGRAM AND PROCESS OF

DEVELOPMENT

Consider a computer program as a construction, and the
process of its development as a constructive process.

The elements of the program are lexemes with semantic
attributes, such as a reserved word, identifier, separator,
operation sign, relation sign, and comment. They are
interconnected by many different syntactic and semantic
relations.

Based on the relations of aggregation, aggregation
operations are performed (mentally, in a person’s head). As a
result, intermediate forms with independent syntactic and
semantic meaning are formed.

Syntactic relations: following, immediately following,
nesting, aggregation and inverse to them. Semantic relationships
are usually N-ary. So, the comment has value if all the lexemes
are present and in a certain order.

Even small programs have an extremely complex design.
Only immediately following relations k-1, where k is the
number of elements in the program, and followings (k-1)!, not
to mention the great variety and number of other relations.

Consider a small example of an intermediate form –
numbers[mid]. The two lexemes «[» and «]» are in syntactic
relations of following and aggregating into a composite outfix
unary relation. Semantically, [mid] defines the element
number in the numbers array. The result is a semantic-
syntactic aggregate – a term.

The task of developing a program (of a complex
construction), of its text is considerably simplified if the
writing of semantic-syntactic aggregates (terms, operators,
semantically related groups of operators) is not broken. Such
aggregates must be spelled out completely. On the one hand,
the method of stepwise refinement provides for such an
approach. On the other hand, the visualization of the program
development process allows you to monitor the continuity of
the development of aggregates.

V. DESCRIPTION OF DEVELOPED EXTENSION

To monitor the program development process, an extension
for Visual Studio was created. Visual Studio provides an
extensible, project-independent object model that presents
solutions, projects, code objects, documents, and so on. Each
type is represented by its corresponding automation interface.

The developed extension consists of three modules: storing
of the program development history; calculating the difference
between versions; visualization of development history.

The module for storing versions of the program
development ensures that all versions of the update of the
program texts are saved, except for those that do not contain
useful information. It makes no sense to store all versions of
the writing of each character in a line of text.

If keep the first or the latest version and patches, the
consistent application of which will give new versions of the
program, then the calculation of the difference between the
versions can create the effect of "braking" the development
environment.

Based on the analysis of the mechanisms for calculating
the difference between versions and the available experimental
data, the Histogram algorithm was chosen [11].

The module for storing the history of writing a program text
is an implementation of the IWpfTextViewCreationListener
interface. This allows you to handle all the events of the text
editor in which the code is written.

The module saves not only the current version, but also
information about changes to the text. Changes can be single-
line and multi-line. If the change is single line then the line
number is stored. Type of change can be: Insert, Edit, and
Delete.

The module for calculating the difference between
versions handles a collection of program versions with
information about changes. The result is a sequence of
continuously typed strings of characters. If the change is one-
line, calculating the difference only for this line. If the type of
change Insert does not need to do any calculations. Since this
line will be the result. In other cases, the Histogram algorithm
is used to calculate the difference between versions.

The visualization module uses Three.js [12] to demonstrate
the development history of the program as a set of 3D cubes.

The input of this module is a dictionary. The key of the
dictionary is the sequence number of the string added to the
program being studied, the value is the string itself. Its output
– sequence of 3D parallelepipeds of n-i height, where n –

© 2019 IEEE

 CSIT 2019, 17-20 September, 2019, Lviv, Ukraine

https://doi.org/10.1109/STC-CSIT.2019.8929774

quantity of strings in the dictionary, i – key of the dictionary.
Consequently, the string written the first will have the
maximum height.

VI. RESULTS

Consider an example of visualization of the program
development process. There is a text of the program:

 /// Searches the entire sorted array of numbers for an

 element.

 /// <param name="numbers">Array of

numbers</param>

 /// <param name="item">The object to locate.</param>

 /// <returns>The index of the element if item is found,

 otherwise a negative number</returns>

 public static int BinarySearch(int[] numbers, int item)

 {

 int low = 0;

 int high = numbers.Length - 1;

 while (low <= high)

 {

 // Find the middle of the array

 int mid = low + (high - low) / 2;

 if (item < numbers[mid])

 {

 // If the search item is less than the value in the

 middle, then the high limit will be the element

 to the middle.

 high = mid - 1;

 }

 else if (item > numbers[mid])

 {

 // If the search key is greater than the value in the

 middle, then the lower limit will be the element

 after the middle.

 low = mid + 1;

 }

 else

 {

 // Item index found.

 return mid;

 }

 }

 // Item index not found.

 return -1;
 }

It history will look like as follows:

#1 – public static int BinarySearch(int[] numbers, int item)

#2 – int low = 0;

#3 – int high = numbers.Length - 1;

#4 – return -1;

#5 – while (low <= high)

#6 – int mid = (high - low) / 2;

#7 – return mid;

#8 – if (item < numbers[mid])

#9 – high = mid - 1;

#10 – else if (item > numbers[mid])

#11 – low = mid + 1;

#12 – else

#13 – /// Searches the entire sorted array of numbers for
an element.
/// <param name="numbers">Array of numbers</param>
/// <param name="item">The object to locate.</param>
/// <returns>The index of the element if item is found,
otherwise a negative number</returns>

#14 – // Item index not found.

#15 – // If the search item is less than the value in the
middle, then the high limit will be the element to the middle.

#16 – // If the search key is greater than the value in the
middle, then the lower limit will be the element after the
middle.

#17 – low +

#18 – // Find the middle of the array

#19 – // Item index found.

The iterative development process is presented in the Fig. 1.
Any complex task is detailed at next iteration on next level Pi.

Fig. 1. Graph representation of the program development process according

 to stepwise refinement method

An example of a typical deviation from the method of
stepwise refinement of the program development process is
presented on Fig. 2. This deviation is expressed in the chaotic
writing of the program text, making changes to an already

 // Searches the entire sorted array of numbers for an element.

// <param name="numbers">Array of numbers</param>

// <param name="item">The object to locate.</param>

// <returns>The index of the element if item is found,

otherwise a negative number</returns>

public static int BinarySearch(int[] numbers, int item)

int low = 0;

int high = numbers.Length - 1;

while (low <= high)

{

// Searches the entire
sorted array of numbers

for an element.

}

// Item index

not found.

return -1;

// If the search
item is less

than …

// If the search
key is greater

than …

// Find the middle

of the array

// Item index

found

int mid = low +

(high - low) / 2;

if (item <
numbers[mid])

{

 high = mid - 1;

}

else if (item >
numbers[mid])

{

 low = mid + 1;

}

else
{

 return mid;

}
P3

P2

P1

P0

© 2019 IEEE

 CSIT 2019, 17-20 September, 2019, Lviv, Ukraine

https://doi.org/10.1109/STC-CSIT.2019.8929774

written piece of text, and not adding comments in appointed
time.

Fig. 2. Graph representation of the program development process with

 typical deviation from the stepwise refinement method

Visual 3D representation of development process allows
the teacher receive all the necessary information in the
convenient view.

3D representation of the coding process is provided
(Fig. 3). Provides the ability to scale and rotate the 3D image.

Fig. 3. Visual 3D representation of the coding history

The visualization of the development process of the
presented program clearly shows that the method of stepwise
refinement is broken, because that the comments was written
after the program text, and operator (aggregate) int mid = low
+ (high - low) / 2; was not written continuously.

Conclusions

Development style monitoring methods are the basis for
raising the level of students practical training, reducing the
time used inefficiently in the process of program development
by the student and performance control by the teacher. The
proposed tools will be useful for students in self-control of the
acquired knowledge and skills in program development.

Developed tools comprise three parts. Functionality of the
first part consists in obtaining of information on the order of
making changes to the program text; the second part is aimed
at preparation and analysis of the data obtained; purpose of the
third part is in visual display of the relevant reports.

This software product provides the teacher with the
information about each student work style, and quality of style
with indication of individual features, thus helping to identify the
time-consuming difficulties and to analyze the changes in the
approach to program development during the period of training.
Furthermore, the teacher will get an opportunity to specify and to
verify compliance with certain requirements to the work, which
can be checked in the process of development only.

References
[1] N.Wirth, “Program development by stepwise refinement”, Comm. ACM

14, 1971, pp.221–227.

[2] E.W.Dijkstra, “A Discipline of Programming”, Prentice-Hall, 1976.

[3] N.Gehani, “Program development by stepwise refinement and related
topics”, The Bell System Technical Journal, 1981, pp.347–378.

[4] H.Abelson, G.J.Sussman and J.Sussman, “Structure and Interpretation of
Computer Programs second edition”, Cambridge MA, 2011.

[5] K.Beck, “Extreme Programming Explained: Embrace Chage, second
ed.”, Addison-Wesley, 2004.

[6] D.Knuth, “Literate programming”, Computer Journal, 27 (2), 1984,
pp.97–111.

[7] S.McConnell, “Code complete, 2nd ed”, Microsoft Press, Redmond,
2004.

[8] J.Bennedsen and M.E.Caspersen, “Revealing the programming process”,
Proceedings of the 36th SIGCSE Technical Symposium on Computer
Science Education, 2005, pp.186–190.

[9] A.Shtanyuk and D.Shagbazyan, “Version Control System in education
process”, № 12 (26), 2017, pp.29.

[10] “Automation model overview”, [Online]. Available:
https://docs.microsoft.com/ru-ru/visualstudio/extensibility/internals/
automation-model-overview. [Accessed: 30 March 2019].

[11] Nugroho Y. S., Hata H. and Matsumoto K. (2019), "How Different Are
Different diff Algorithms in Git? Use --histogram for Code Changes",
arXiv:1902.02467.

[12] “Three.js fundamentals”, [Online]. Available:
https://threejsfundamentals.org/threejs/lessons/ru/threejs-
fundamentals.html. [Accessed: 30 March 2019].

public static int BinarySearch(int[] numbers, int item)

// Searches the entire sorted array of numbers for an element.

// <param name="numbers">Array of numbers</param>

// <param name="item">The object to locate.</param>
// <returns>The index of the element if item is found,

otherwise a negative number</returns>

int low = 0;

int high =
numbers.Length - 1;

return -1;

// Item index

not found.

while (low <= high)

{
 // Find the middle

 of the array

 int mid = low +
 (high - low) / 2;

 return mid;

}

if (item <

numbers[mid])

{

 high = mid - 1;
}

else if (item >

numbers[mid])
{

 low = mid + 1;

}

else

{
 return mid;

}

// If the search key

is greater than ...

// If the search

item is less than

...

// Item index
found

View publication statsView publication stats

https://docs.microsoft.com/ru-ru/visualstudio/extensibility/internals/%20automation-model-overview
https://docs.microsoft.com/ru-ru/visualstudio/extensibility/internals/%20automation-model-overview
https://threejsfundamentals.org/threejs/lessons/ru/threejs-fundamentals.html
https://threejsfundamentals.org/threejs/lessons/ru/threejs-fundamentals.html
https://www.researchgate.net/publication/338188348

