А. А. БРЫНЗА (ДИИТ)

К ВОПРОСУ О ВЫЯВЛЕНИИ ТРЕЩИН В ТРАНСПОРТНЫХ КОНСТРУКЦИЯХ

Исследуется влияние усталостной трещины на динамические характеристики транспортной конструкции с помощью математической модели, построенной с использованием обобщенных функций.

Ключевые слова: усталостная трещина, упругий шарнир, обобщенные функции

Усталостная трещина является одним из наиболее распространенных видов повреждений, возникающих в процессе эксплуатации транспортных конструкций. Основное направление исследований по динамике конструкций с трещинами связано с идентификацией трещин и их локализацией по изменению динамических характеристик конструкции по сравнению с цельной конструкцией. В работе [1] на примере опертой балки показано, что наличие в конструкции трещины и ее местоположение легче обнаружить путем прикрепления небольшой дополнительной сосредоточенной массы, за счет чего происходит более существенное изменение частот и форм колебаний. В данной работе эта задача решается аналитически с помощью обобщенных функций.

Одной из математических моделей усталостной трещины в стержневых конструкциях есть представление ее в виде упругого шарнира [2, 3]. На рис. 1,а приведена балка с трещиной. Здесь $x_{\rm T}$ — координата расположения трещины; L — длина балки; h — высота балки, а $h_{\rm T}$ — глубина трещины.

На рис. 1, δ приведена физическая модель балки с трещиной. Она моделируется двумя стержневыми сегментами, соединенными между собой устройством в виде упругого шарнира, препятствующего повороту сегментов относительно друг друга. Жесткость упругого шарнира $k_{\rm T}$ равна величине момента M, который необходимо приложить к соединительному устройству, чтобы угол поворота сегментов балки относительно друг друга был равен единице.

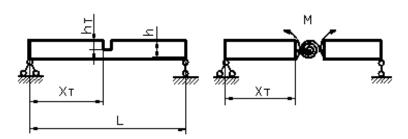


Рис. 1. a) — расположение трещины δ) — физическая модель балки с трещиной

Жесткость упругого шарнира в работе находится численно с помощью конечно-элементной модели балки с трещиной. Трещина моделируется поперечным разрезом определенной глубины. Изменение угла поворота сечений по обе стороны от трещины ($\Delta\theta$) в зависимости от глубины трещины ($h_{\rm T}$), в виду его малости, определяется как отношение разницы Δ_x горизонтальных перемещений верхних узлов конечно-элементной модели балки по обе стороны разреза к высоте поперечного сечения ($\Delta\theta = \Delta_x/h$). Тогда жесткость упругого шарнира $k_{\rm T} = M/\Delta\theta$.

В качестве примера рассматривается шарнирно-опертая коробчатая балка сечением 40×80 мм с толщиной стенки 2 мм. Длина — 3.9 м, а погонная масса — 3.62 кг/м [1].

На рис. 2 приведен график изменения жесткости упругого шарнира, деленной на изгибную жесткость балки ($k_{\rm T}/EI$), в зависимости от относительной глубины трещины ($\Gamma = h_{\rm T}/h$), полученный с помощью конечно-элементной модели. Необходимо отметить, что коэффициент жесткости упругого шарнира не зависит от местоположения трещины и способа закрепления концов балки.

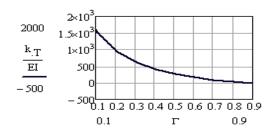


Рис. 2. График изменения жесткости упругого шарнира

Решение этой задачи находим с помощью применения обобщенных функций. Рассмотрим свободные колебания балки несущей сосредоточенную массу при наличии трещины. Пусть трещина находится в сечении $x=x_{\rm T}$, а сосредоточенная масса M в сечении $x=x_{\rm M}$. Дифференциальное уравнение форм собственных колебаний имеет следующий вид

$$[EI(x)X_k"]" - m(x)v_k^2 X_k = 0,$$
 (1)

где $m(x) = m_0 + M \sigma_1(x - x_M)$, а $\sigma_1(x - x_M)$ – импульсивная функция первого порядка или δ - функция Дирака.

Заменим уравнение (1) системой следующих уравнений [4]

$$X_k " = \frac{I_0}{I(x)} z, \quad EI_0 z_k " = m(x) v_k^2 X_k,$$
 (2)

где $z = -\frac{M(x)}{EI_0}$ — «масштабированный» изги-

бающий момент.

В общем случае, перемещение $X_k(x)$ может быть представлено в виде

$$X_{k}(x) = X_{k}^{*} + \Delta X_{k}'(x_{T})(x - x_{T})\sigma_{0}(x - x_{T}), \qquad (3)$$

где X_k^* - некоторая функция, имеющая непрерывную первую производную по x; ΔX_k ' $(x_T) = X'(x_T+0) - X'(x_T-0)$ — взаимный угол поворота сечений слева и справа от трещины (упругого шарнира), а

$$\Delta X_k'(x-x_T)\sigma_0(x-x_T) = \begin{cases} \Delta X'(x-x_T) & npu \quad x > x_T \\ 0 & npu \quad x \le x_T \end{cases}.$$

Тогда $X_k(x)$ есть непрерывная в сечении $x = x_T$ функция. Дифференцируя соотношение (3) дважды по x, получаем

$$X_{k}^{"} = X_{k}^{*} " + \Delta X_{k}^{"} (x_{T}) \sigma_{1} (x - x_{T}).$$

Подставляя это выражение в равенство (2), находим

$$\frac{I_0}{I(x)} = \frac{X_k^*"}{z} + \frac{1}{z} \Delta X_k'(x_T) \sigma_1(x - x_T).$$

При $x \neq x_T$ $I(x) = I_0$, поэтому $\frac{X_k^*}{z} = 1$. В

силу непрерывности z в точке $x=x_T$ и на основании фильтрующего свойства δ -функция Дирака

$$\frac{\sigma_1(x-x_T)}{z(x)} = \frac{\sigma_1(x-x_T)}{z(x_T)}.$$

Ho

$$\frac{\Delta X_k'(x_T)}{z(x_T)} = \frac{EI_0}{k_T},$$

где k_T – жесткость упругого шарнира моделирующего трещину. Поэтому

$$EI(x) = EI_0 \left[1 + \frac{EI_0}{k_T} \sigma_1 (x - x_T) \right]^{-1}.$$
 (4)

Таким образом, изгибная жесткость равна EI_0 всюду, кроме сечения $x=x_T$. В этом сечении она имеет сосредоточенное включение определяемые выражением (4). На основании уравнения (2)

$$X_k " = \left[1 + \frac{EI_0}{k_T} \sigma_1 (x - x_T)\right] z,$$

или, в силу непрерывности z в сечении $x = x_T$

$$X_k$$
" = $z + \frac{EI_0}{k_T} z(x_T) \sigma_1(x - x_T)$.

Дифференцируя дважды это соотношение и подставляя на основании второго уравнения (2)

$$z'' = \frac{\mathbf{v}_k^2}{EI_0} (m_0 + M\sigma_1(x - x_M)) X_k(x)$$

получаем дифференциальное уравнение форм свободных колебаний балки несущей сосредоточенную массу при наличии трещины

$$X_{k}^{IV} - k_{k}^{4} X_{k} =$$

$$= \frac{M v_{k}^{2}}{E I_{0}} X_{k}(x_{M}) \sigma_{1}(x - x_{M}) +$$

$$+ \Delta X_{k}'(x_{T}) \sigma_{3}(x - x_{T}),$$
(5)

где
$$k_k^4 = \frac{m_0 v_k^2}{E I_0}$$
, а $\sigma_3(x - x_T)$ – импульсивная

функция третьего порядка.

Решение уравнения (5) находится с помощью преобразования Лапласа.

Рассмотрим шарнирно-опертую балку. Будем полагать, что сосредоточенная масса находится справа от трещины $(x_T < x_M)$. Исключив промежуточные параметры, получим выражение $X_k(x)$, которое будет иметь разрыв непрерывности І-го рода только при $x=x_T$.

Для составления характеристического уравнения используем граничные условия на правом конце балки $X_k(L) = X_k^"(L) = 0$.

В качестве проверки приведенной математической модели балки с сосредоточенной массой, рассмотрим случай, когда сосредоточенная масса расположена на середине длины, а погонная масса балки уменьшается на 5 порядков,

т.е. принимается практически равной нулю. Изгибная жесткость балки при этом остается без изменений. В этом случае балка превращается в систему с одной степенью свободы. Частота колебаний балки в этом случае лишь на 0,2 % отличается от решения, найденного для системы с 1-й степенью свободы.

В табл. 1 приведены круговые частоты колебаний балки с трещиной различной относительной глубины при отсутствии сосредоточенной массы. Здесь $\ell_T = x_T / \ell$ — относительная координата трещины, а Γ — ее относительная глубина. При Γ =0,01 трещина была на толщину коробчатой балки. В табл. 2 приведены низшие частоты балки с трещиной относительной глубины Γ =0,333 и с дополнительной массой равной 5 % от массы балки, при различных положениях трещины и дополнительной массы.

Таблица 1 Круговые частоты колебаний балки с трещиной при отсутствии сосредоточенной массы

№ частот	Балка без трещины	Балка с трещиной							
		$\ell_T = 0,25$ Γ				$\ell_T = 0,5$			
						Γ			
		0,01	0,31	0,51	0,7	0,01	0.31	0,51	0,7
1	17,73	17,73	17,72	17,72	17,7	17,73	17,73	17,72	17,68
2	70,92	70,92	70,88	70,83	70,67	70,92	70,92	70,92	70,92
3	159,6	159,6	159,5	159,4	158,9	159,7	160,6	162,1	168
4	283,7	283,7	283,7	283,7	283,7	283,7	283,7	283,7	283,7

Таблица 2 Низшие частоты балки с трещиной при различных положениях трещины и дополнительной массы

№	Нет	Балка с трещиной (Γ =0,31) и дополнительной массой ($M=0,05mL$)								
ча- стот	трещины, нет массы	Нет трещины, есть масса		Есть трещина, нет массы		Есть трещина, есть масса				
		$\ell_M = 0,25$	$\ell_M = 0,5$	$\ell_T = 0,25$	$\ell_T = 0,5$	$\ell_T = 0.25$	$\ell_T = 0,25$	$\ell_T = 0,5$	$\ell_T = 0,5$	
						$\ell_M = 0,25$	$\ell_M = 0,5$	$\ell_M = 0,5$	$\ell_T = 0.5$ $\ell_M = 0.75$	
1	17,73	17,17	16,91	17,72	17,73	17,17	16,9	16,9	17,32	
2	70,92	68,08	70,9	70,88	70,92	68,04	70,87	70,9	67,75	
3	159,6	158,9	152,7	159,5	160,6	158,8	152,7	153,7	155,6	
4	283,7	279,3	283,5	283,7	283,7	279,4	283,3	283,2	288,4	

Из полученных результатов можно сделать следующие выводы:

- 1. Изменение частот и форм колебаний конструкции зависит от местоположения трещины. При малых трещинах частоты и формы колебаний изменяются незначительно. Если трещина находится в «пучности» колебаний, то соответствующая частота и форма колебаний изменяются на «максимальную» для данного размера дефекта величину. Нахождение трещины в «узле» колебаний не приводит к изменению соответствующей частоты и формы колебаний.
- 2. Наличие сосредоточенной массы на конструкции более заметно изменяет частоты и формы колебаний.
- 3. При наличии на конструкции с малой трещиной дополнительной сосредоточенной массы, изменение частот и форм колебаний происходит в основном за счет влияния дополнительной массы. При средней или большой трещине наличие даже небольшой дополнительной массы заметно изменяет частоты и формы собственных колебаний по сравнению с частотами колебаний балки с такой же дополнительной массой, но без трещины. Причем чем ближе дополнительная масса к трещине, тем большие наблюдается изменения.

4. На основе сопоставления линий влияния дополнительной массы на динамические характеристики конструкции, определенные при введении ее в эксплуатацию и при исследовании технического состояния, можно более достоверно определить трещину и ее месторасположение [1].

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Редченко, В. П., Дослідження проблеми виявлення дефектів мостів методами вібродіагностики [Текст] / В. П. Редченко, Ю. В. Крючков, Т. В. Редченко. Д., 2011.
- Бересневич, В. И. Сопоставительный анализ математических моделей усталостной трещины [Текст] / В. И. Бересневич // Вестник научнотехнического развития, НТГ, № 12(28). 2009. С. 12–18.
- Bamnios, Y. Identification of cracks in single and double – cracked beams using mechanical impedance [Terct] /Y. Bamnios, E. Douka, A. Trochidis // Proc.X Intern. Congress on sound and vibration, 2003, Stockholm, Sweden. – P. 1267–1274.
- 4. Лазарян, В. А., Обобщенные функции в задачах механіки [Текст] / В. А. Лазарян, С. И. Конашенко. К., Наук. думка, 1974. С. 190.

Поступила в редколлегию 09.07.2012. Принята к печати 23.07.2012.

А. А. БРИНЗА (ДІІТ)

ДО ПИТАННЯ ПРО ВИЯВЛЕННЯ ТРІЩИН У ТРАНСПОРТНИХ КОНСТРУКЦІЯ

Досліджується вплив втомної тріщини на динамічні характеристики транспортної конструкції за допомогою математичної моделі, побудованої з використанням узагальнених функцій.

Ключові слова: втомна тріщина, пружний шарнір, узагальнені функції

A. A. BRINZA (Dniepropetrovsk National University of Railway Transport)

ON THE VEHICLE IDENTIFICATION OF CRACKS IN STRUCTURES

The effect of fatigue cracks on the dynamic characteristics of the transport structure through a mathematical model constructed by using generalized functions.

Keywords: fatigue crack, the elastic hinge distributions