CONCAVE SHELLS OF CONTINUITY MODULES

S. A. Pichugov

We prove the inequality

$$
\bar{\omega}(t) \leq \inf _{s>0}\left(\omega\left(\frac{s}{2}\right)+\frac{\omega(s)}{s} t\right)
$$

where $\omega(t)$ is a function of the modulus-of-continuity type and $\bar{\omega}(t)$ is its smallest concave majorant. The consequences obtained for Jackson's inequalities in $C_{2 \pi}$ are presented.

Let $\omega(t): R^{+} \rightarrow R^{+}$be a function of the modulus-of-continuity type, i.e., $\omega(t)$ is a continuous nondecreasing function, $\omega(0)=0$, and $\omega\left(t_{1}+t_{2}\right) \leq \omega\left(t_{1}\right)+\omega\left(t_{2}\right)$. Also let Ω be the class of all functions of this kind. The following lemma is true for the least concave majorant $\bar{\omega}(t)$:

Lemma. For any $\omega \in \Omega$ and all $k \in N$, the inequalities

$$
\begin{equation*}
\bar{\omega}(k t) \leq(k+1) \omega(t) \tag{1}
\end{equation*}
$$

are true. Inequality (1) is exact on the class Ω, i.e., for any $t>0$,

$$
\begin{equation*}
\sup _{\omega \in \Omega} \frac{\bar{\omega}(k t)}{\omega(t)}=k+1 \tag{2}
\end{equation*}
$$

Earlier, this lemma was proved by Stechkin [1] for $k=1$ and by Korneichuk [2] for $k \in N$. Let

$$
\omega(f, h):=\max _{|t| \leq h} \max _{x}|f(x+t)-f(x)|=\max _{|t| \leq h}\|f(\cdot+t)-f(\cdot)\|
$$

be the modulus of continuity of a 2π-periodic continuous function f in the space $C_{2 \pi}$ and let

$$
\|f\|=\max _{x}|f(x)| .
$$

Then $\omega(f, h) \in \Omega$ and, in addition, the property

$$
\begin{equation*}
\omega(f, h)=\omega(f, \pi) \tag{3}
\end{equation*}
$$

is true for all $h \geq \pi$.

[^0]Translated from Ukrains'kyi Matematychnyi Zhurnal, Vol. 71, No. 5, pp. 716-720, May, 2019. Original article submitted March 15, 2018.

Assume that the class Ω contains only functions ω for which the additional property (3) is true. For any ω of this type from Ω, there exists a function $f \in C_{2 \pi}$ such that [3] (Sec. 7.1)

$$
\begin{equation*}
\omega(f, t)=\omega(t) \tag{4}
\end{equation*}
$$

for all $t>0$.
We prove a somewhat corrected inequality (1).
Theorem. Suppose that $\omega \in \Omega$. Then, for all $t>0$,

$$
\begin{equation*}
\bar{\omega}(t) \leq \inf _{s>0}\left(\omega\left(\frac{s}{2}\right)+\frac{\omega(s)}{s} t\right) \tag{5}
\end{equation*}
$$

and, in particular,

$$
\begin{equation*}
\bar{\omega}(k t) \leq \omega\left(\frac{t}{2}\right)+k \omega(t) . \tag{6}
\end{equation*}
$$

For all $k \in N$ and every $t \in\left(0, \frac{\pi}{k}\right)$, inequality (6) is unimprovable on the class Ω in a sense that

$$
\begin{equation*}
\sup _{\omega \in \Omega} \frac{\bar{\omega}(k t)}{\omega\left(\frac{t}{2}\right)+k \omega(t)}=1 . \tag{7}
\end{equation*}
$$

Proof. By the Peetre theorem [4],

$$
\begin{equation*}
\frac{1}{2} \bar{\omega}(f, 2 t)=K\left(f, t ; C, C^{1}\right):=\inf _{g \in C^{1}}\left(\|f-g\|+t\left\|g^{\prime}\right\|\right)=\inf _{N>0}\left\{\|f-g\|+t N ;\left\|g^{\prime}\right\| \leq N\right\} \tag{8}
\end{equation*}
$$

According to the Korneichuk theorem [3] (Sec. 8.3), we get

$$
\begin{equation*}
\inf \left\{\|f-g\| ;\left\|g^{\prime}\right\| \leq N\right\}=\frac{1}{2} \max _{y \in[0, \pi]}(\omega(f, y)-N y) . \tag{9}
\end{equation*}
$$

If follows from (4), (8), and (9) that

$$
\bar{\omega}(t)=\inf _{N>0}\left(\max _{y \in[0, \pi]}(\omega(y)-N y)+N t\right) .
$$

For any $s \in(0, \pi)$, we set

$$
N=\frac{\omega(s)}{s} .
$$

Then

$$
\begin{equation*}
\bar{\omega}(t) \leq \inf _{s}\left(\max _{y \in[0, \pi]}\left(\omega(y)-\frac{\omega(s)}{s} y\right)+\frac{\omega(s)}{s} t\right) . \tag{10}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\max _{y \in[0, \pi]}\left(\omega(y)-\frac{\omega(s)}{s} y\right)=\max _{y \in[0, s]}\left(\omega(y)-\frac{\omega(s)}{s} y\right) . \tag{11}
\end{equation*}
$$

Indeed, let $y>s$, i.e., $y=k s+y^{\prime}$, where $k \in N$ and $y^{\prime} \in[0, s]$. Then

$$
\begin{aligned}
\omega(y)-\frac{\omega(s)}{s} y & =\omega\left(k s+y^{\prime}\right)-\frac{\omega(s)}{s}\left(k s+y^{\prime}\right) \\
& \leq\left(k \omega(s)+\omega\left(y^{\prime}\right)\right)-\left(k \omega(s)+\frac{\omega(s)}{s} y^{\prime}\right) \\
& =\omega\left(y^{\prime}\right)-\frac{\omega(s)}{s} y^{\prime}
\end{aligned}
$$

We now show that

$$
\begin{equation*}
\max _{y \in[0, s]}\left(\omega(y)-\frac{\omega(s)}{s} y\right) \leq \omega\left(\frac{s}{2}\right) . \tag{12}
\end{equation*}
$$

For $y \in\left[0, \frac{s}{2}\right]$, this is obvious. Let $y \in\left[\frac{s}{2}, s\right]$. Then

$$
\omega(y)-\frac{\omega(s)}{s} y \leq \omega(s)-\frac{\omega(s)}{s} \frac{s}{2}=\frac{1}{2} \omega\left(2 \cdot \frac{s}{2}\right) \leq \omega\left(\frac{s}{2}\right) .
$$

In view of the arbitrariness of s, inequality (5) follows from (10)-(12).
Since

$$
\omega\left(\frac{t}{2}\right)+k \omega(t) \leq(k+1) \omega(t)
$$

relation (7) follows from (2):

$$
\sup _{\omega \in \Omega} \frac{\bar{\omega}(k t)}{\omega\left(\frac{t}{2}\right)+k \omega(t)} \geq \sup _{\omega \in \Omega} \frac{\bar{\omega}(k t)}{(k+1) \omega(t)}=1 .
$$

The theorem is proved.
Relation (2) appears to be useful in proving the exact Jackson inequalities for the best uniform approximations of continuous periodic functions by trigonometric polynomials. If

$$
e_{n-1}(f):=\inf _{\left\{C_{k}\right\}}\left\|f(x)-\sum_{|k| \leq n-1} C_{k} e^{i k x}\right\|,
$$

then, by the Korneichuk theorem [3] (Sec. 7.6), we get

$$
\begin{equation*}
e_{n-1}(f) \leq \frac{1}{2} \bar{\omega}\left(f, \frac{\pi}{n}\right) \tag{13}
\end{equation*}
$$

It follows from (2) that, for $k \in N$, we can write

$$
e_{n-1}(f) \leq \frac{k+1}{2} \omega\left(f, \frac{\pi}{n k}\right) .
$$

For any $k \in N$, this inequality is uniformly exact in n, namely [2],

$$
\begin{equation*}
\left(1-\frac{1}{2 n}\right) \frac{1}{2} \leq \sup _{f \in C_{2 \pi}} \frac{e_{n-1}(f)}{(k+1) \omega\left(f, \frac{\pi}{n k}\right)} \leq \frac{1}{2} \tag{14}
\end{equation*}
$$

If, instead of (2), we apply relation (5) to inequality (13), then we get the following form of the Jackson inequality:

$$
\begin{equation*}
e_{n-1}(f) \leq \frac{1}{2} \inf _{s>0}\left(\omega\left(f, \frac{s}{2}\right)+\frac{\omega(f, s)}{s} \frac{\pi}{n}\right) \tag{15}
\end{equation*}
$$

We now mention some specific values of s for which the constant $\frac{1}{2}$ on the right-hand side of (15) is unimprovable:

$$
\left(1-\frac{1}{2 n}\right) \frac{1}{2} \leq \sup _{f \in C_{2 \pi}} \frac{e_{n-1}(f)}{\omega\left(f, \frac{\pi}{n}\right)+\frac{1}{2} \omega\left(f, \frac{2 \pi}{n}\right)} \leq \frac{1}{2}
$$

for $k \in N$,

$$
\left(1-\frac{1}{2 n}\right) \frac{1}{2} \leq \sup _{f \in C_{2 \pi}} \frac{e_{n-1}(f)}{\omega\left(f, \frac{\pi}{2 n k}\right)+k \omega\left(f, \frac{\pi}{n k}\right)} \leq \frac{1}{2}
$$

In particular,

$$
\begin{equation*}
\left(1-\frac{1}{2 n}\right) \frac{1}{2} \leq \sup _{f \in C_{2 \pi}} \frac{e_{n-1}(f)}{\omega\left(f, \frac{\pi}{2 n}\right)+\omega\left(f, \frac{\pi}{n}\right)} \leq \frac{1}{2} \tag{16}
\end{equation*}
$$

Here, the lower bounds directly follow from (14).
Note that relations similar to (16) with the same constant $1 / 2$ are also true in the spaces $L_{p}[0,2 \pi], p \in[1,2]$.
Let

$$
\begin{gathered}
\|f\|_{p}=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}|f(x)|^{p} d x\right)^{1 / p}, \\
e_{n-1}(f)_{p}:=\inf _{\left\{C_{k}\right\}}\left\|f(x)-\sum_{|k| \leq n-1} C_{k} e^{i k x}\right\|_{p} \\
\omega(f, h)_{p}=\sup _{|t| \leq h}\left\|\Delta_{t} f(x)\right\|_{p}, \quad \Delta_{t} f(x)=f(x+t)-f(x) .
\end{gathered}
$$

In [5, 6], Chernykh proved the following Jackson inequalities sharp for all $n \in N$:

$$
\begin{gather*}
e_{n-1}(f)_{2} \leq \frac{1}{2^{1 / 2}} \omega\left(f, \frac{\pi}{n}\right)_{2} \\
e_{n-1}(f)_{p} \leq \frac{1}{2^{1-\frac{1}{p}}} \omega\left(f, \frac{2 \pi}{n}\right)_{p}, \quad p \in[1,2) . \tag{17}
\end{gather*}
$$

These inequalities follow from his more exact inequalities:

$$
\begin{gather*}
e_{n-1}^{2}(f)_{2} \leq \frac{n}{4} \int_{0}^{\pi / n} \sin n t\left\|\Delta_{t} f\right\|_{2}^{2} d t, \\
e_{n-1}^{p}(f)_{p} \leq \frac{1}{2^{p-1}} \frac{n}{4} \int_{0}^{2 \pi / n} \sin \frac{n}{2} t\left\|\Delta_{t} f\right\|_{p}^{p} d t, \quad p \in[1,2) . \tag{18}
\end{gather*}
$$

Since

$$
\begin{aligned}
\frac{n}{4} \int_{0}^{\pi / n} \sin n t\left\|\Delta_{t} f\right\|_{2}^{2} d t & =\frac{n}{4} \int_{0}^{\pi / 2 n} \sin n t\left\|\Delta_{t} f\right\|_{2}^{2} d t+\frac{n}{4} \int_{\pi / 2 n}^{\pi / n} \sin n t\left\|\Delta_{t} f\right\|_{2}^{2} d t \\
& \leq \frac{1}{4} \omega^{2}\left(f, \frac{\pi}{2 n}\right)_{2}+\frac{1}{4} \omega^{2}\left(f, \frac{\pi}{n}\right)_{2}
\end{aligned}
$$

we have

$$
\begin{equation*}
e_{n-1}(f)_{2} \leq \frac{1}{2}\left(\omega^{2}\left(f, \frac{\pi}{2 n}\right)_{2}+\omega^{2}\left(f, \frac{\pi}{n}\right)_{2}\right)^{1 / 2} \tag{19}
\end{equation*}
$$

Similarly, for $p \in[1,2)$, we get

$$
\begin{equation*}
e_{n-1}(f)_{p} \leq \frac{1}{2}\left(\omega^{p}\left(f, \frac{\pi}{n}\right)_{p}+\omega^{p}\left(f, \frac{2 \pi}{n}\right)_{p}\right)^{1 / p} \tag{20}
\end{equation*}
$$

The constant $1 / 2$ in inequalities (19) and (20) is sharp in $L_{p}[0,2 \pi]$ for any n, and the extreme functions are the same as in (17) (see [5, 6]).

For $p \in(2, \infty)$, the exact inequalities similar to (17) and (18) are known only for $n=1$. Thus, the inequality

$$
e_{0}(f)_{p} \leq \frac{1}{2^{1 / p}} \omega(f, \pi)_{p}
$$

was obtained in [7] and the inequality

$$
\begin{equation*}
e_{0}(f)_{p} \leq \frac{1}{2^{1 / p}}\left(\frac{1}{\pi} \int_{0}^{\pi}\left\|\Delta_{t} f\right\|_{p}^{p^{\prime}} d t\right)^{1 / p^{\prime}} \tag{21}
\end{equation*}
$$

where $p^{\prime}=p(p-1)^{-1}$, was deduced in [8]. Inequality (21) yields the following analog of the exact inequalities (19) and (20) for $n=1$ and $p>2$:

$$
\begin{align*}
e_{0}(f)_{p} & \leq \frac{1}{2^{1 / p}}\left(\frac{1}{\pi} \int_{0}^{\pi / 2} \omega^{p^{\prime}}(f, t)_{p} d t+\frac{1}{\pi} \int_{\pi / 2}^{\pi} \omega^{p^{\prime}}(f, t)_{p} d t\right)^{1 / p^{\prime}} \\
& \leq \frac{1}{2}\left(\omega^{p^{\prime}}\left(f, \frac{\pi}{2}\right)_{p}+\omega^{p^{\prime}}(f, \pi)_{p}\right)^{1 / p^{\prime}} \tag{22}
\end{align*}
$$

A sequence of δ-shaped functions is extreme in (22).

REFERENCES

1. A. V. Efimov, "Linear approximation methods for continuous periodic functions," Mat. Sb., 54, No. 1, 51-90 (1961).
2. N. P. Korneichuk, "On the exact constant in Jackson's inequality for continuous periodic functions," Mat. Zametki, 32, No. 5, 669-674 (1982).
3. N. P. Korneichuk, Extreme Problems of the Approximation Theory [in Russian], Nauka, Moscow (1976).
4. J. Peetre, "Exact interpolation theorems for Lipschitz continuous functions," Ric. Mat., 18, 1-21 (1969).
5. N. I. Chernykh, "On the best approximation of periodic functions in L_{2} by trigonometric polynomials," Mat. Zametki, 2, No. 5, 513-522 (1967).
6. N. I. Chernykh, "Jackson inequality in $L_{p}(0,2 \pi)(1 \leq p \leq 2)$ with exact constant," Tr. Mat. Inst. Ros. Akad. Nauk, 198, 232-241 (1992).
7. S. A. Pichugov, "Young constant of the space L_{p}," Mat. Zametki, 43, No. 5, 604-614 (1988).
8. V. I. Ivanov, "On the modulus of continuity in L_{p}," Mat. Zametki, 41, No. 5, 382-385 (1987).

[^0]: Dnepr National University of Railway Transport, Ukraine; e-mail: pichugov@i.ua.

