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I. INTRODUCTION 

Nowadays almost the half of main and suburban 
railway transport, all mine and pit railway transport and, 
of course, all urban electric transport of Ukraine are 
exploited using the DC traction power supply system. 
Electric locomotives, trains, multiple-unit trains, metro 
cars use the DC voltage with nominal rate from 550 to 
3000 V. However, electric rolling stock (ERS) is a non-
stationary, sharply changing, non-linear load, where 
frequent dynamic operation modes of power circuit 
elements give rise to flowing of stochastic electric 
tractive currents )(tI  in power circuits of ERS and 
power supply network [1, 2]. Furthermore, the elements 
of ERS power circuits are under the significant influence 
of randomly time-varying voltage )(tU  of power supply 
network (Fig. 1). 

II. THEORETICAL ANALYSIS 
As for as the voltage )(tU  on the current collector of 

ERS and consumed current )(tI  are stochastic 
processes, their spectral composition should be carried 
out using the probabilistic methods which are based on 
the theory of random functions. The harmonic 
composition of DC voltage and current is assumed to be 
a probabilistic one. For their spectral composition 
analysis, we may consider the application of two 
different methods: the statistical-spectral method and the 
correlation-spectral one.  

The first one is based on the discrete Fourier 
transformation applied to the voltage )(tU  and current 

)(tI , which are non-sinusoidal and non-periodical 

functions. We conduct our analysis for a general random 
function )(tf  that can be replaced by )(tU  or )(tI . 

For this purpose, the continuous function )(tf  is 
discretized with the time intervals nn ttt  1  (Fig. 2). 

In Fig. 2: N  is a total number of discretized intervals; 
,...,N,n 10 ; then NTt / .  

Two ways of the expansion )(tf  into a series are 
possible: by the application of the piecewise constant 
approximation (step curve 0,1,…,5 in Fig. 2) and the 
piecewise-linear approximation of the function )(tf . 

Application of the piecewise-constant approximation 
assumes that the discretized function )(tf  has a constant 
value within the range of any interval t . Then we split 
the well-known expression [3] for calculation of a 
complex amplitude of th-k harmonic 
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 Fig.1. Recorded voltage on the current collector 
 

 Fig.2. The discretization of characteristic of random function  
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into the sum of integrals (according to Fig. 2): 
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Whereas the value of the function )( ntf  is constant 
within the range from nt  to 1nt , the integrand is easy 
integrated and is written as 
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After taking into account that 2T   and 
/nt nT N , we get the expression of the complex 

amplitude of th-k harmonic for the function )(tf  in 
case of its piecewise constant approximation 
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Application of the piecewise-linear approximation 
allows us to describe the function )(tf  within the 
interval ],[ 1nn tt  by such linear function  
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where ],[ 1 nn ttt . The function described by (5) works 
for each discretization interval t  taken separately and 
only within the range of the mentioned above. 

If we substitute (5) in (1), we get the following 
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After that, we split (6) into the sum of integrals and 
integrate it to get the final formula of the complex 
amplitude for the case of the piecewise-linear 
approximation: 
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Subsequently, (4) or (7) can be used to get the spectral 
composition of the random function )(tf  representing 

voltage )(tU  or current )(tI . The expressions give 
virtually the same result and the difference between the 
results is less than 1,0%.  

Equations (4) and (7) describe the harmonics by the 
complex numbers, thus the amplitude of th-k harmonic 
in the unknown Fourier series of the function )(tf  is 
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where )()( kk
m CA   and  )()( arg kk C . 

This method of spectral composition defining allows 
us to obtain the amplitude-frequency and phase-
frequency responses only for a certain )(tf , which 
constitutes  a particular case of some random function of 
voltage or current. However, a large number of load 
characteristics of )(tU  and )(tI  changes drastically and 
has a random component. This feature complicates the 
calculation of accurate data for amplitudes and 
frequencies of harmonics discrete spectrum. Therefore, 
it is necessary to distinguish between the harmonics in 
the spectrum that are caused by random factors and 
those that appear in all characteristics (i.e. in the whole 
random process). To accomplish the task, we use for 
determination of the random process spectrum its 
correlation function, that is, we apply Fourier 
transformation not to the stochastic function itself, but to 
its correlation function. This is correlation-spectral 
method. 

A correlation function is the most significant 
characteristic of a random process and characterizes its 
internal structure. The function provides the information 
about the correlation degree between the voltage (or 
current) values at different moments of operation. 

As it is known, the correlation function of random 
process [2] is defined, for example, for the voltage by 
the expression 
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where T  – is the period of the voltage (or current); 
)(tU , )( tU  are the values of random function at the 

moments t  and )( t , respectively; Um  – is the 
mathematical expectation of random function. 

It is known [4] that correlation functions of random 
processes of voltage and current in sharply changing 
loads are not attenuate in the course of   and this fact 
indicates a non-ergodic random process. The sustained  
part of the correlation function (frequently called the 
“tail” of correlation function) has the same frequencies 
as the random process [5]. In connection with this,  
Fourier transformation has to be applied to the “tail” of 
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correlation function for the analysis of spectral 
composition of periodical components of the voltage 
and current. This method allows us to differentiate the 
periodical components from the ergodic random process 
which is impossible in case of application of Fourier 
transformation to the random process as a whole. One of 
the following formulas of correlation functions can 
characterize the beforementioned ergodic random 
process: 

t
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where D  – is a dispersion of random process;   –  is 
the attenuation coefficient of the correlation function; 

0  –  is the eigenfrequency of the correlation function. 
So we represent the voltage (or traction current) as the 

sum of random function )(' tU  with an attenuating 
correlation function described by any of the expressions 
given by (10), (11), (12) and low-frequency periodical 
components: 
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where )(k
mU   – is the constant amplitude of th-k  

periodical component of the voltage across ERS current 
collector; k   – is the frequencies of th-k  periodical 
component; )(k  –  is its initial phases. 

As a result, we can extract the ergodic random 
function )(' tU  from the non-ergodic random process 

)(tU  (13) and define what periodical oscillations (their 
amplitudes or frequencies) are present in the random 
process spectrum. 

If the interval of registration T  of random function is 
much more than period 2 /k   of the lowest frequency 
component, (13) can be represented as 
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where )(' UK   –  is any of the correlation functions 
described by (10), (11) and (12). 

Therefore, if the sinusoidal components are present in 
the random function describing the voltage across the 
current collector or the tractive current, the “tail” of the 
correlation function is the sum of cosines of the same 
frequencies, where cosine amplitude is equal to the half 

of square amplitude of corresponding sinusoidal 
component of the voltage or current characteristics. 

III. ANALYSIS OF RESULTS 
For the experimental analysis, voltage and current 

characteristics have been recorded in the process of real 
operation of VL8 and VL11M6 locomotives, EPL2T 
multiple-unit train in the sections of Lviv and 
Prydniprovsk railways and T4D tram. The example of 
characteristic of the voltage across the current collector 
for EPL2T electric multiple-unit train is shown in Fig. 1. 
All records have been analyzed using the methods 
mentioned above for the recuperative braking modes [1] 
and the results of voltage analysis are shown in Figs. 3, 
4 and 5 for EPL2T electric multiple-unit train.  
 

 Fig.3. Correlation function of the voltage 
 

 

 Fig.4. Spectrum of the instant voltage function 
 

 Fig.5. Spectrum of the “tail” of voltage correlation function  
 

The shape of correlation functions shows that the 
voltage characteristic has the low-frequency periodical 
components (interharmonics). Spectrum of the “tail” of 
correlation function is thinned in comparison with 
spectrum for the instant voltage function. 
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IV. CONCLUSIONS 
1. Voltage and current of DC ERS are the stationary 

non-ergodic random functions in recuperative braking 
mode. 

2. The oscillations of current are random values and 
are changing in the wide range in the recuperative 
braking mode. These oscillations depend on the ERS 
type and change drastically in trams. The current values 
are frequently drifted in the region of its lowest values. 

3. The sign changing in the “tail” of correlation 
function show that characteristics have interharmonics. 

4. The amplitude spectrum of instant values )(tU , 
)(tI , and, of course, the correlation function spectrum 

are induced by the components with the frequency range 
0,001…1 Hz. The current of trams has higher 
frequencies than electric locomotives and trains. 
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