Abstract: The efficiency of the recuperative braking of DC electric rolling stock is analyzed in the article. The monitoring of voltages and currents was done for the trains EPL2T and locomotives VL8 in the traction and the recuperative braking modes. The basic, additional and the total technical losses of the recuperated energy were calculated for DC traction power system. The statistical and theoretical distributions of the RMS current, the additional and total losses were drawn and the basic probabilistic coefficients were calculated for them.

Key words: recuperation, electric energy, traction power system, losses, stochastic process, current.

1. Introduction

According to the current State Standard 19350-74 [1], a recuperative braking mode (RBM) is the mode of electric braking in which the electrical energy produced by the traction motors is fed back into the traction power supply system. The part of this energy should be consumed by electric rolling stock (ERS) which moves in the traction mode on the same feeding section. Other part of it flows through the feeder busbars of the traction substation (TS) and spreads through the neighboring feeding sections to the other ERS which moves in the traction mode (if it is available). Finally, the third part of the energy (the excess energy) comes to the TS’s inverter or the absorbing ballast resistors (if they are available). Thus, in the first case, the energy must be transferred to an external power grid, but in the second case the energy is needlessly dissipated as heat in the resistors. It is quite clear that in all cases the recuperated energy is transmitted by the traction power system, and therefore it has to be the losses in the network. Theoretical and numerical analysis of these losses is certainly important. The recuperative braking process has been used since the founding of electric traction but the technical and economic efficiency of this braking is not fully proven and it follows from [2].

If we take the total savings from the recuperative braking equals 100%, the energy savings equal 53% of it and other 47% are the savings of the brake blocks in the compressed-air brake system. Furthermore, there exist the additional operating losses on the track structure, the locomotive repair and the sand supply which are totally equal to 48%. It is seen that saving of the brake blocks (47%) covers the additional operating losses but the economic impact can be achieved only through the recovered energy. The electrical efficiency of the regenerative braking is evaluated by the electric energy meters. The difference between the consumed and recovered energies by the ERS and TS is used for this calculation. That is, the influence of the recovered energy on its power losses in the elements of the traction power system has been explored yet. It is evidenced by the lack of scientific publications on this problem. The exception is the work [3] in which the results of the simulations of the freight locomotives VL10 are presented for different modes of its operation. All these simulations were done for the double-track section Taiga-Marinsk of the West Siberian Railway (Russian Federation). Calculations show the follow:

1) in accordance with the electric energy meters of TS the energy losses in the traction power system equal 6,59 % of the total losses (when the locomotive doesn’t use the RBM);
2) for the journeys with RBM the energy losses are equal to 7,42 %;
3) for the journeys with RBM and the availability of the invertors on the TS the energy losses are equal to 7,40 %.

Thus, the purpose of this work is to develop the methods for numerical evaluation of the basic and additional (technical) losses of the recovered energy which flows through the traction power system from ERS to TS (or the ERS which is moving in traction mode).

2. Theoretical backgrounds for the power losses calculation

Fig. 1 shows the voltage \(U(t)\) and current \(I(t)\) records of the train EPL2T \((a)\) and the freight locomotive VL8 \((b)\) in the traction and the recuperative braking modes. EPL2T has total weight 566,5 tones and 32 axes. VL8 has the total weight 4500 tones and 236 axes. All data were recorded in the process of operation in Prydniprovsk Railway. It is seen that in all modes the current and voltage are random quantities.

If the stationary nature of the \(U(t)\) and \(I(t)\) (or \(u(t)\) and \(i(t)\)) is the cause of the losses of the active
In accordance with Kirchhoff’s Current Law, the energy in a traction power network is the reactive power by the current i, the voltage u, and the inductive element gy.

The basic losses ΔW_0 are based on the active power transmission and they occur when the traction power system operates in sinusoidal, balanced and stable (in the nature of consumption) mode. In fact, these losses are necessary for electricity transmission and therefore they are inevitable.

$$\Delta W_0 = R \cdot I^2 \cdot \tau_r$$

where R is a resistance of the section of the traction power supply system.

Additional losses in the power circuit of ERS and the traction power system are studied in the works [4, 5] for the traction mode but the analysis of the recuperative braking mode is absent. Therefore the theoretical aspects of the basic ΔW_0 and additional ΔW_{add} energy losses are considered for this mode in the paper.

In accordance with work [6] and researches [4, 5] the conception of S. Fryze is the most reasonable and proper. Their decision is based on position of the calculation of the energy losses in the steady state and transient modes of the traction power system.

In accordance with this conception and the theory of electrical engineering, ERS is a passive two-terminal circuit which has the current $i(t)$ of any shape. We can represent the circuit by the parallel connection of the resistive element, which characterises the active energy consuming, and the inductive element, which characterises the consuming of the reactive energy. These branches divide the input current $i(t)$ into the two componets. First of them is an active component $i_a(t)$ of the current and flows through the resistor. This current $i_a(t)$ and the input voltage $u_a(t)$ have the same shapes. But the second part of the current $i(t)$ is the reactive component $i_r(t)$. It flows though the inductor and has the orthogonal shape in comparison with the input voltage $u_r(t)$. In accordance with Kirchhoff’s Current Law the instantaneous value of the input current $i(t)$ is equal to

$$i(t) = i_a(t) + i_r(t).$$

(1)

The squared RMS values of the active and reactive currents give the RMS vale of the total current:

$$I^2 = I_a^2 + I_r^2.$$

(2)

Multiple the both sides of equation (2) by the squared RMS voltage U^2:

$$U^2 \cdot I^2 = U^2 \cdot I_a^2 + U^2 \cdot I_r^2,$$

$$S^2 = P^2 + Q^2,$$

(3)

where S is the total power, Q is the reactive power by Fryze. Its average value per the period equals zero. Phisically this power is the energy which oscillates between the source (TS) and consumer (ERS) or is some part of the total energy which is not delivered to the consumer.

After that, in accordance with formula (2), the technical losses ΔW of the regenerated energy in the traction power system over a period of the recuperative braking τ_r can be calculated like follow:

$$\Delta W = R \cdot I^2 \cdot \tau_r = R \cdot I_a^2 \cdot \tau_r + R \cdot I_r^2 \cdot \tau_r,$$

(4)

where R is a resistance of the section of the traction power supply system.
Technical Losses of the Recovered Electric Energy in DC Traction Power Supply System

The component \(R \cdot I_a^2 \cdot \tau_r \) is based on the active part of the recuperated current which flows through traction power system. It is named a basic losses of the recuperated energy:

\[
\Delta W_0 = R \cdot I_a^2 \cdot \tau_r.
\]

(5)

Multiple this equation and divide it by \(U^2 \). We get the formula for the basic power losses which is based on the active power \(P \) :

\[
\Delta W_0 = R \cdot I_a^2 \cdot \frac{U^2}{U^2} \cdot \tau_r = R \cdot \frac{P^2}{U^2} \cdot \tau_r.
\]

(6)

The second component \(R \cdot I_a^2 \cdot \tau_r \) is the active losses of the recuperated energy too. But it based on the reactive part of the recuperated current and it is known like an additional power losses:

\[
\Delta W_{\text{add}} = R \cdot I_a^2 \cdot \tau_r.
\]

(7)

Similarly to previous formulas, multiple this equation and divide it by \(U^2 \). We get the formula for the additional power losses which is based on the Fryze’s reactive power \(Q_r \) :

\[
\Delta W_{\text{add}} = R \cdot I_a^2 \cdot \frac{U^2}{U^2} \cdot \tau_r = R \cdot \frac{Q_r^2}{U^2} \cdot \tau_r.
\]

(8)

In formulas (6) and (8) the active and reactive powers are used for the basic and additional energy losses calculation. These powers (\(P, Q_r \) and \(S \)) and the period of the recuperative braking \(\tau_r \) are defined using the correlation and dispersion method which is specified in work [8].

In accordance with formulas (2), (4), (5) and (7) the total technical losses of the recuperated energy \(\Delta W \) can be calculated like:

\[
\Delta W = R \cdot I_a^2 \cdot \tau_r.
\]

(9)

These losses are the function of the random quantity which is the total current \(I \) [8, 9], because the \(R \) and \(\tau_r \) are the deterministic values. Using the distribution theory of the function of the random argument [10] and using formula (9) we get the theoretical law for the distribution of the random quantity \(\Delta W \). Imagine that the random quantity of the recuperated current \(I \) is distributed in accordance with a law \(\varphi(I) \). Find the inverse function \(I(\Delta W) \) from equation (9):

\[
I = \sqrt[3]{\frac{\Delta W}{R \cdot \tau_r}}.
\]

(10)

Derive the equation (10) with respect to \(\Delta W \):

\[
\frac{dl}{d(\Delta W)} = \frac{1}{2} \sqrt{\frac{1}{\Delta W \cdot R \cdot \tau_r}}.
\]

(11)

After this the law of the total technical losses distribution of the recuperated energy \(\Delta W \) can be calculated like follow:

\[
\int f(\Delta W) = \varphi\left(\sqrt[3]{\frac{\Delta W}{R \cdot \tau_r}}\right) d\frac{1}{2} \sqrt{\frac{1}{\Delta W \cdot R \cdot \tau_r}} = \int \frac{1}{2} \sqrt{\frac{1}{\Delta W \cdot R \cdot \tau_r}}.
\]

(12)

Using formula (9) we can write the probabilistic coefficients of the losses \(\Delta W \). They are:

- the mathematical expectation

\[
M[\Delta W] = M[R \cdot I_a^2 \cdot \tau_r] = R \cdot \tau_r \cdot M[I^2] =
\]

\[
=R \cdot \tau_r \cdot \left(M[I^2]\right)^2 + D[I] =
\]

\[
=R \cdot \tau_r \cdot m^2_I + \sigma^2_I,
\]

(13)

- the dispersion

\[
D[\Delta W] = R \cdot \tau_r \cdot D[I^2] =
\]

\[
=2R \cdot \tau_r \cdot \left(M[I]\right)^2 \cdot D[I] + D^2[I] =
\]

\[
=2R \cdot \tau_r \cdot m^2_I \cdot \sigma^2_I + \sigma^2_I,
\]

(14)

where \(M[...] \) or \(m \) are the mathematical expectation; \(D[...] \) is the dispersion, \(\sigma \) is the standard deviation.

As follows from expressions (13) and (14), the absolute values and deviations of the energy losses in the traction power system depend on the standard deviation, i.e. the variations of the recuperated current.

3. Calculations and their analysis

The basic, additional and total losses of the recuperated energy are estimated using the expressions (6), (8) and (9) which are derived above. All calculations are done for the two real zones of the power supply system in Prydniprovsk Railway. For this the voltage and current are synchronous recorded from the trains EPL2T and the freight locomotives VL8 in the process of real operation in the traction and regenerative modes. The results of experiments and calculations are shown in table.

Table

<table>
<thead>
<tr>
<th>Journey number</th>
<th>(W_a) [kW·h]</th>
<th>(\Delta W_a) [kW·h]</th>
<th>(\Delta W_{\text{add}}) [kW·h]</th>
<th>(\Delta W) [kW·h]</th>
<th>(\Delta W_a/\Delta W) [%]</th>
<th>(\Delta W_{\text{add}}/\Delta W) [%]</th>
<th>(\Delta E/\Delta W) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13,5</td>
<td>1,454</td>
<td>0,015</td>
<td>1,469</td>
<td>99</td>
<td>1</td>
<td>4,2</td>
</tr>
<tr>
<td>2</td>
<td>20,256</td>
<td>1,026</td>
<td>0,142</td>
<td>1,168</td>
<td>88</td>
<td>12</td>
<td>5,8</td>
</tr>
<tr>
<td>3</td>
<td>46,878</td>
<td>3,624</td>
<td>0,153</td>
<td>3,778</td>
<td>96</td>
<td>4</td>
<td>8,1</td>
</tr>
<tr>
<td>4</td>
<td>14,26</td>
<td>0,653</td>
<td>0,007</td>
<td>0,66</td>
<td>98,9</td>
<td>1,1</td>
<td>4,6</td>
</tr>
<tr>
<td>5</td>
<td>12,817</td>
<td>206,6</td>
<td>23,3</td>
<td>229,9</td>
<td>90</td>
<td>10</td>
<td>28,1</td>
</tr>
<tr>
<td>6</td>
<td>31,284</td>
<td>45,6</td>
<td>3,7</td>
<td>49,3</td>
<td>92</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>103,84</td>
<td>205,2</td>
<td>47</td>
<td>252,2</td>
<td>81</td>
<td>19</td>
<td>24,4</td>
</tr>
<tr>
<td>8</td>
<td>2128,5</td>
<td>472,36</td>
<td>52,44</td>
<td>524,8</td>
<td>90</td>
<td>10</td>
<td>24,6</td>
</tr>
</tbody>
</table>
Anatoliy V. Nikitenko

In the table: ΔW_{rec} is the recuperated energy of the train for the whole journey (column 2), ΔW_0 is the basic energy losses (column 3), ΔW_{add} is the additional energy losses (column 4), ΔW is the total energy losses (column 5) in the traction power supply system and their percentages (columns 6, 7 and 8).

As it is seen from the table (column 9), the ratio of the total energy losses relative to the recuperated energy is from 4.2 to 8.1% for EPL2T and is from 15 to 28.1% for VL8. This difference is understandable because the trains operate with the different loads in the route (and thus they have the different RMS values of the recuperated current which vary till 283 A and 1283 A for EPL2T and VL8 respectively). The percentages of the basic and additional technical losses in the total losses are shown in columns 7 and 8. It is seen that the basic energy losses ΔW_0 are the main part of the total losses ΔW. They are the result of the active energy transferring. However, there are journeys in which the non-stationary (stochastic) nature of the voltage and current is the cause of the high additional losses of the recuperated energy. These losses vary from 10 to 20% (column 8: journeys 2, 5, 7, 8).

Stochastic character of the values of the technical losses is confirmed using their histograms and probability values of the coefficients: the mathematical expectation m, the dispersion D, the standard deviation σ, the coefficients of asymmetry As and excess Ex (Fig. 2 and 3). From the histograms and the probabilistic coefficients follow that the statistical distribution of the values ΔW_{add} and ΔW doesn’t obey the Gauss Law. It was established from the next parameters. Firstly, there is a left-side skewness of the distribution with large positive values of the asymmetry coefficient As ranging from 2 to 4.55. Secondly, the coefficient of excess is large and positive values too (≈ 4.0).

Note that, all values in the table and histograms are obtained only for the feeder zone of the traction power system in which the EMF moves in the recuperative braking mode. But, in fact, the recuperated energy flows to the neighboring feeder zones, the invertors in the substations, the external power grid and the technical losses can be bigger in two times or more.

The experimentally obtained values of $D_{\Delta W}$ (Fig. 2b and 3b) confirm the theoretically derived expression (14), which shows that the variation of technical losses is strongly depended on the fluctuations of the recovered current. Indeed, for the EPL2T journeys the standard deviation of the RMS current is $\sigma_I = 59.38$ [A] (Fig. 2c) and for the total energy losses is $\sigma_{\Delta W} = 0.224$ [kW·h] (Fig 2b). But for the VL8 these values are much bigger than for the EPL2T and are equal to $\sigma_I = 272.5$ [A] (Fig. 3c), $\sigma_{\Delta W} = 30.9$ [kW·h] (Fig 3b).

Fig. 2. The statistical (1) and theoretical (2) distributions of the additional (a) and total (b) energy losses, the current (b) for the train EPL2T in the recuperative braking mode.
4. Conclusions

1. The recuperative braking process has been used since the founding of electric traction but the technical and economic efficiency of this braking is not fully proven.

2. In the process of the recuperative braking the energy flows from ERS to the traction substations. This energy raises the technical losses in the elements of the DC traction power supply system which can be over 30% of the total recovered energy.

3. The voltage and current in the recovery mode are stochastic processes which make the energy of low quality and it is the cause of the additional losses in the power network.

4. Technical energy losses in the power network are probabilistic in nature and they depend upon the standard deviation of the recovered current.

References

ТЕХНОЛОГІЧНІ ВТРАТИ РЕКУПЕРОВАНОЇ ЕЛЕКТРОЕНЕРГІЇ В ТЯГОВІЙ МЕРЕЖІ ПОСТІЙНОГО СТРУМУ

Анатолій Нікітенко

В статті проаналізовано ефективність застосування рекуперативного гальмування електрорухомим складом постійного струму. Моніторинг напруг та струмів виконано для електропоїздів ЕПЛ2Т та електровозів ВЛ8. Розраховано основні, додаткові та повні технологічні втрати енергії рекуперації в тяговій мережі постійного струму. Побудовано статистичні та теоретичні розподіли діючого струму, додаткових та повних втрат енергії рекуперації, а також розраховано основні імовірнісні показники.

Anatolii V. Nikitenko

Anatolii V. Nikitenko was born on September 11, 1989. In 2011 he graduated from Dnipropetrovsk National University of Railway Transport named after Ac. V. Lazarian with the speciality “Electromechanical systems of automation and electric drivers”. Since 2011 he has been working at Dnipropetrovsk National University of Railway Transport holding the post of an assistant of lecturer. In 2013 he took part in the international exchange program and studied at Lanzhou Jiaotong University, PR China. Since 2014 he becomes a head of the Polish Center of Education, Science and Culture. Research interests: energy saving technologies, their effectiveness and practical application.